Spaces:
Sleeping
Sleeping
initial commit
Browse files
app.py
CHANGED
@@ -1,110 +1,110 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import BertForSequenceClassification, BertTokenizer
|
3 |
-
from safetensors.torch import load_file
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
# Load model dan tokenizer
|
7 |
-
model_path = "
|
8 |
-
state_dict = load_file(model_path)
|
9 |
-
|
10 |
-
model = BertForSequenceClassification.from_pretrained('indobenchmark/indobert-base-p2', num_labels=3)
|
11 |
-
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
|
12 |
-
|
13 |
-
model.load_state_dict(state_dict, strict=False)
|
14 |
-
model.eval() # Set model ke mode evaluasi
|
15 |
-
|
16 |
-
# Fungsi deteksi stres dengan model
|
17 |
-
def detect_stress(input_text):
|
18 |
-
# Tokenisasi input teks
|
19 |
-
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
20 |
-
|
21 |
-
# Inference
|
22 |
-
with torch.no_grad():
|
23 |
-
outputs = model(**inputs)
|
24 |
-
|
25 |
-
# Mengambil prediksi
|
26 |
-
logits = outputs.logits
|
27 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
28 |
-
|
29 |
-
# Label, warna, dan pesan berdasarkan tingkat stres
|
30 |
-
labels = {
|
31 |
-
0: ("Tidak Stres", "#8BC34A", "Saat ini anda tidak mengalami stres. Tetap jaga kesehatan Anda!"),
|
32 |
-
1: ("Stres Ringan", "#FF7F00", "Saat ini anda sedang mengalami stres ringan. Luangkan waktu untuk relaksasi."),
|
33 |
-
2: ("Stres Berat", "#F44336", "Saat ini anda sedang mengalami stres berat. Mohon untuk segera melakukan konsultasi.")
|
34 |
-
}
|
35 |
-
|
36 |
-
level, color, message = labels[predicted_class]
|
37 |
-
return f"<div style='color: white; background-color: {color}; padding: 10px; border-radius: 5px;'>" \
|
38 |
-
f"Level stress anda : {level}<br>{message}" \
|
39 |
-
f"</div>"
|
40 |
-
|
41 |
-
# Komponen Gradio
|
42 |
-
with gr.Blocks(css="""
|
43 |
-
body {
|
44 |
-
background-color: black;
|
45 |
-
color: white;
|
46 |
-
font-family: Arial, sans-serif;
|
47 |
-
}
|
48 |
-
.gradio-container {
|
49 |
-
width: 100%;
|
50 |
-
max-width: 600px;
|
51 |
-
margin: 0 auto;
|
52 |
-
text-align: center;
|
53 |
-
}
|
54 |
-
#title {
|
55 |
-
background-color: #ff7a33;
|
56 |
-
padding: 20px;
|
57 |
-
font-size: 24px;
|
58 |
-
font-weight: bold;
|
59 |
-
}
|
60 |
-
textarea {
|
61 |
-
background-color: #3a3a3a;
|
62 |
-
color: white;
|
63 |
-
border: none;
|
64 |
-
border-radius: 5px;
|
65 |
-
padding: 5px;
|
66 |
-
font-size: 14px;
|
67 |
-
}
|
68 |
-
|
69 |
-
textarea:focus {
|
70 |
-
border-color: #ff7a33 !important;
|
71 |
-
}
|
72 |
-
.button_detect {
|
73 |
-
background-color: #ff7a33;
|
74 |
-
color: white;
|
75 |
-
border: none;
|
76 |
-
border-radius: 5px;
|
77 |
-
width: 20px;
|
78 |
-
height: 50px;
|
79 |
-
font-size: 14px;
|
80 |
-
cursor: pointer;
|
81 |
-
}
|
82 |
-
.button_detect:hover {
|
83 |
-
background-color: #e5662c;
|
84 |
-
}
|
85 |
-
""") as demo:
|
86 |
-
with gr.Row():
|
87 |
-
gr.Markdown("<h1 id='title'>Stress Detector</h1>")
|
88 |
-
|
89 |
-
with gr.Row():
|
90 |
-
input_text = gr.Textbox(label="Masukkan teks", placeholder="Ketik sesuatu di sini...", lines=3)
|
91 |
-
|
92 |
-
# Tombol submit
|
93 |
-
with gr.Row():
|
94 |
-
btn_submit = gr.Button("Deteksi", elem_classes ="button_detect")
|
95 |
-
|
96 |
-
with gr.Row():
|
97 |
-
output_label = gr.HTML(label="Hasil Deteksi")
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
gr.Markdown(
|
101 |
-
"<p style='text-align: center;'>"
|
102 |
-
"0 untuk <b>Tidak Stress</b>, 1 untuk <b>Stress</b>, dan 2 untuk <b>Stress Berat</b>."
|
103 |
-
"</p>"
|
104 |
-
)
|
105 |
-
|
106 |
-
# Interaksi Gradio
|
107 |
-
btn_submit.click(fn=detect_stress, inputs=input_text, outputs=output_label)
|
108 |
-
|
109 |
-
# Jalankan demo
|
110 |
-
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
3 |
+
from safetensors.torch import load_file
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load model dan tokenizer
|
7 |
+
model_path = "model (5).safetensors"
|
8 |
+
state_dict = load_file(model_path)
|
9 |
+
|
10 |
+
model = BertForSequenceClassification.from_pretrained('indobenchmark/indobert-base-p2', num_labels=3)
|
11 |
+
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-base-p2')
|
12 |
+
|
13 |
+
model.load_state_dict(state_dict, strict=False)
|
14 |
+
model.eval() # Set model ke mode evaluasi
|
15 |
+
|
16 |
+
# Fungsi deteksi stres dengan model
|
17 |
+
def detect_stress(input_text):
|
18 |
+
# Tokenisasi input teks
|
19 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
20 |
+
|
21 |
+
# Inference
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
|
25 |
+
# Mengambil prediksi
|
26 |
+
logits = outputs.logits
|
27 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
28 |
+
|
29 |
+
# Label, warna, dan pesan berdasarkan tingkat stres
|
30 |
+
labels = {
|
31 |
+
0: ("Tidak Stres", "#8BC34A", "Saat ini anda tidak mengalami stres. Tetap jaga kesehatan Anda!"),
|
32 |
+
1: ("Stres Ringan", "#FF7F00", "Saat ini anda sedang mengalami stres ringan. Luangkan waktu untuk relaksasi."),
|
33 |
+
2: ("Stres Berat", "#F44336", "Saat ini anda sedang mengalami stres berat. Mohon untuk segera melakukan konsultasi.")
|
34 |
+
}
|
35 |
+
|
36 |
+
level, color, message = labels[predicted_class]
|
37 |
+
return f"<div style='color: white; background-color: {color}; padding: 10px; border-radius: 5px;'>" \
|
38 |
+
f"Level stress anda : {level}<br>{message}" \
|
39 |
+
f"</div>"
|
40 |
+
|
41 |
+
# Komponen Gradio
|
42 |
+
with gr.Blocks(css="""
|
43 |
+
body {
|
44 |
+
background-color: black;
|
45 |
+
color: white;
|
46 |
+
font-family: Arial, sans-serif;
|
47 |
+
}
|
48 |
+
.gradio-container {
|
49 |
+
width: 100%;
|
50 |
+
max-width: 600px;
|
51 |
+
margin: 0 auto;
|
52 |
+
text-align: center;
|
53 |
+
}
|
54 |
+
#title {
|
55 |
+
background-color: #ff7a33;
|
56 |
+
padding: 20px;
|
57 |
+
font-size: 24px;
|
58 |
+
font-weight: bold;
|
59 |
+
}
|
60 |
+
textarea {
|
61 |
+
background-color: #3a3a3a;
|
62 |
+
color: white;
|
63 |
+
border: none;
|
64 |
+
border-radius: 5px;
|
65 |
+
padding: 5px;
|
66 |
+
font-size: 14px;
|
67 |
+
}
|
68 |
+
|
69 |
+
textarea:focus {
|
70 |
+
border-color: #ff7a33 !important;
|
71 |
+
}
|
72 |
+
.button_detect {
|
73 |
+
background-color: #ff7a33;
|
74 |
+
color: white;
|
75 |
+
border: none;
|
76 |
+
border-radius: 5px;
|
77 |
+
width: 20px;
|
78 |
+
height: 50px;
|
79 |
+
font-size: 14px;
|
80 |
+
cursor: pointer;
|
81 |
+
}
|
82 |
+
.button_detect:hover {
|
83 |
+
background-color: #e5662c;
|
84 |
+
}
|
85 |
+
""") as demo:
|
86 |
+
with gr.Row():
|
87 |
+
gr.Markdown("<h1 id='title'>Stress Detector</h1>")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
input_text = gr.Textbox(label="Masukkan teks", placeholder="Ketik sesuatu di sini...", lines=3)
|
91 |
+
|
92 |
+
# Tombol submit
|
93 |
+
with gr.Row():
|
94 |
+
btn_submit = gr.Button("Deteksi", elem_classes ="button_detect")
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
output_label = gr.HTML(label="Hasil Deteksi")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
gr.Markdown(
|
101 |
+
"<p style='text-align: center;'>"
|
102 |
+
"0 untuk <b>Tidak Stress</b>, 1 untuk <b>Stress</b>, dan 2 untuk <b>Stress Berat</b>."
|
103 |
+
"</p>"
|
104 |
+
)
|
105 |
+
|
106 |
+
# Interaksi Gradio
|
107 |
+
btn_submit.click(fn=detect_stress, inputs=input_text, outputs=output_label)
|
108 |
+
|
109 |
+
# Jalankan demo
|
110 |
+
demo.launch()
|