Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from fairseq.utils import new_arange | |
# -------------- Helper Functions --------------------------------------------------- # | |
def load_libnat(): | |
try: | |
from fairseq import libnat_cuda | |
return libnat_cuda, True | |
except ImportError as e: | |
print(str(e) + "... fall back to CPU version") | |
try: | |
from fairseq import libnat | |
return libnat, False | |
except ImportError as e: | |
import sys | |
sys.stderr.write( | |
"ERROR: missing libnat_cuda. run `python setup.py build_ext --inplace`\n" | |
) | |
raise e | |
def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx): | |
libnat, use_cuda = load_libnat() | |
def _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx): | |
in_masks = in_tokens.ne(padding_idx) | |
out_masks = out_tokens.ne(padding_idx) | |
mask_ins_targets, masked_tgt_masks = libnat.generate_insertion_labels( | |
out_tokens.int(), | |
libnat.levenshtein_distance( | |
in_tokens.int(), | |
out_tokens.int(), | |
in_masks.sum(1).int(), | |
out_masks.sum(1).int(), | |
), | |
) | |
masked_tgt_masks = masked_tgt_masks.bool() & out_masks | |
mask_ins_targets = mask_ins_targets.type_as(in_tokens)[ | |
:, 1 : in_masks.size(1) | |
].masked_fill_(~in_masks[:, 1:], 0) | |
masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) | |
return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets | |
def _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx): | |
in_seq_len, out_seq_len = in_tokens.size(1), out_tokens.size(1) | |
in_tokens_list = [ | |
[t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) | |
] | |
out_tokens_list = [ | |
[t for t in s if t != padding_idx] | |
for i, s in enumerate(out_tokens.tolist()) | |
] | |
full_labels = libnat.suggested_ed2_path( | |
in_tokens_list, out_tokens_list, padding_idx | |
) | |
mask_inputs = [ | |
[len(c) if c[0] != padding_idx else 0 for c in a[:-1]] for a in full_labels | |
] | |
# generate labels | |
masked_tgt_masks = [] | |
for mask_input in mask_inputs: | |
mask_label = [] | |
for beam_size in mask_input[1:-1]: # HACK 1:-1 | |
mask_label += [0] + [1 for _ in range(beam_size)] | |
masked_tgt_masks.append( | |
mask_label + [0 for _ in range(out_seq_len - len(mask_label))] | |
) | |
mask_ins_targets = [ | |
mask_input[1:-1] | |
+ [0 for _ in range(in_seq_len - 1 - len(mask_input[1:-1]))] | |
for mask_input in mask_inputs | |
] | |
# transform to tensor | |
masked_tgt_masks = torch.tensor( | |
masked_tgt_masks, device=out_tokens.device | |
).bool() | |
mask_ins_targets = torch.tensor(mask_ins_targets, device=in_tokens.device) | |
masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) | |
return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets | |
if use_cuda: | |
return _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx) | |
return _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx) | |
def _get_del_targets(in_tokens, out_tokens, padding_idx): | |
libnat, use_cuda = load_libnat() | |
def _get_del_targets_cuda(in_tokens, out_tokens, padding_idx): | |
in_masks = in_tokens.ne(padding_idx) | |
out_masks = out_tokens.ne(padding_idx) | |
word_del_targets = libnat.generate_deletion_labels( | |
in_tokens.int(), | |
libnat.levenshtein_distance( | |
in_tokens.int(), | |
out_tokens.int(), | |
in_masks.sum(1).int(), | |
out_masks.sum(1).int(), | |
), | |
) | |
word_del_targets = word_del_targets.type_as(in_tokens).masked_fill_( | |
~in_masks, 0 | |
) | |
return word_del_targets | |
def _get_del_targets_cpu(in_tokens, out_tokens, padding_idx): | |
out_seq_len = out_tokens.size(1) | |
with torch.cuda.device_of(in_tokens): | |
in_tokens_list = [ | |
[t for t in s if t != padding_idx] | |
for i, s in enumerate(in_tokens.tolist()) | |
] | |
out_tokens_list = [ | |
[t for t in s if t != padding_idx] | |
for i, s in enumerate(out_tokens.tolist()) | |
] | |
full_labels = libnat.suggested_ed2_path( | |
in_tokens_list, out_tokens_list, padding_idx | |
) | |
word_del_targets = [b[-1] for b in full_labels] | |
word_del_targets = [ | |
labels + [0 for _ in range(out_seq_len - len(labels))] | |
for labels in word_del_targets | |
] | |
# transform to tensor | |
word_del_targets = torch.tensor(word_del_targets, device=out_tokens.device) | |
return word_del_targets | |
if use_cuda: | |
return _get_del_targets_cuda(in_tokens, out_tokens, padding_idx) | |
return _get_del_targets_cpu(in_tokens, out_tokens, padding_idx) | |
def _apply_ins_masks( | |
in_tokens, in_scores, mask_ins_pred, padding_idx, unk_idx, eos_idx | |
): | |
in_masks = in_tokens.ne(padding_idx) | |
in_lengths = in_masks.sum(1) | |
# HACK: hacky way to shift all the paddings to eos first. | |
in_tokens.masked_fill_(~in_masks, eos_idx) | |
mask_ins_pred.masked_fill_(~in_masks[:, 1:], 0) | |
out_lengths = in_lengths + mask_ins_pred.sum(1) | |
out_max_len = out_lengths.max() | |
out_masks = new_arange(out_lengths, out_max_len)[None, :] < out_lengths[:, None] | |
reordering = (mask_ins_pred + in_masks[:, 1:].long()).cumsum(1) | |
out_tokens = ( | |
in_tokens.new_zeros(in_tokens.size(0), out_max_len) | |
.fill_(padding_idx) | |
.masked_fill_(out_masks, unk_idx) | |
) | |
out_tokens[:, 0] = in_tokens[:, 0] | |
out_tokens.scatter_(1, reordering, in_tokens[:, 1:]) | |
out_scores = None | |
if in_scores is not None: | |
in_scores.masked_fill_(~in_masks, 0) | |
out_scores = in_scores.new_zeros(*out_tokens.size()) | |
out_scores[:, 0] = in_scores[:, 0] | |
out_scores.scatter_(1, reordering, in_scores[:, 1:]) | |
return out_tokens, out_scores | |
def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, unk_idx): | |
word_ins_masks = in_tokens.eq(unk_idx) | |
out_tokens = in_tokens.masked_scatter(word_ins_masks, word_ins_pred[word_ins_masks]) | |
if in_scores is not None: | |
out_scores = in_scores.masked_scatter( | |
word_ins_masks, word_ins_scores[word_ins_masks] | |
) | |
else: | |
out_scores = None | |
return out_tokens, out_scores | |
def _apply_del_words( | |
in_tokens, in_scores, in_attn, word_del_pred, padding_idx, bos_idx, eos_idx | |
): | |
# apply deletion to a tensor | |
in_masks = in_tokens.ne(padding_idx) | |
bos_eos_masks = in_tokens.eq(bos_idx) | in_tokens.eq(eos_idx) | |
max_len = in_tokens.size(1) | |
word_del_pred.masked_fill_(~in_masks, 1) | |
word_del_pred.masked_fill_(bos_eos_masks, 0) | |
reordering = new_arange(in_tokens).masked_fill_(word_del_pred, max_len).sort(1)[1] | |
out_tokens = in_tokens.masked_fill(word_del_pred, padding_idx).gather(1, reordering) | |
out_scores = None | |
if in_scores is not None: | |
out_scores = in_scores.masked_fill(word_del_pred, 0).gather(1, reordering) | |
out_attn = None | |
if in_attn is not None: | |
_mask = word_del_pred[:, :, None].expand_as(in_attn) | |
_reordering = reordering[:, :, None].expand_as(in_attn) | |
out_attn = in_attn.masked_fill(_mask, 0.0).gather(1, _reordering) | |
return out_tokens, out_scores, out_attn | |
def _skip(x, mask): | |
""" | |
Getting sliced (dim=0) tensor by mask. Supporting tensor and list/dict of tensors. | |
""" | |
if isinstance(x, int): | |
return x | |
if x is None: | |
return None | |
if isinstance(x, torch.Tensor): | |
if x.size(0) == mask.size(0): | |
return x[mask] | |
elif x.size(1) == mask.size(0): | |
return x[:, mask] | |
if isinstance(x, list): | |
return [_skip(x_i, mask) for x_i in x] | |
if isinstance(x, dict): | |
return {k: _skip(v, mask) for k, v in x.items()} | |
raise NotImplementedError | |
def _skip_encoder_out(encoder, encoder_out, mask): | |
if not mask.any(): | |
return encoder_out | |
else: | |
return encoder.reorder_encoder_out( | |
encoder_out, mask.nonzero(as_tuple=False).squeeze() | |
) | |
def _fill(x, mask, y, padding_idx): | |
""" | |
Filling tensor x with y at masked positions (dim=0). | |
""" | |
if x is None: | |
return y | |
assert x.dim() == y.dim() and mask.size(0) == x.size(0) | |
assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) | |
n_selected = mask.sum() | |
assert n_selected == y.size(0) | |
if n_selected == x.size(0): | |
return y | |
if x.size(1) < y.size(1): | |
dims = [x.size(0), y.size(1) - x.size(1)] | |
if x.dim() == 3: | |
dims.append(x.size(2)) | |
x = torch.cat([x, x.new_zeros(*dims).fill_(padding_idx)], 1) | |
x[mask] = y | |
elif x.size(1) > y.size(1): | |
x[mask] = padding_idx | |
if x.dim() == 2: | |
x[mask, : y.size(1)] = y | |
else: | |
x[mask, : y.size(1), :] = y | |
else: | |
x[mask] = y | |
return x | |