Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq.iterative_refinement_generator import DecoderOut | |
from fairseq.models import register_model, register_model_architecture | |
from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder | |
from fairseq.models.transformer import Embedding | |
from fairseq.modules import TransformerDecoderLayer | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
from .levenshtein_utils import ( | |
_apply_del_words, | |
_apply_ins_masks, | |
_apply_ins_words, | |
_fill, | |
_get_del_targets, | |
_get_ins_targets, | |
_skip, | |
_skip_encoder_out, | |
) | |
class LevenshteinTransformerModel(FairseqNATModel): | |
def allow_length_beam(self): | |
return False | |
def add_args(parser): | |
FairseqNATModel.add_args(parser) | |
parser.add_argument( | |
"--early-exit", | |
default="6,6,6", | |
type=str, | |
help="number of decoder layers before word_del, mask_ins, word_ins", | |
) | |
parser.add_argument( | |
"--no-share-discriminator", | |
action="store_true", | |
help="separate parameters for discriminator", | |
) | |
parser.add_argument( | |
"--no-share-maskpredictor", | |
action="store_true", | |
help="separate parameters for mask-predictor", | |
) | |
parser.add_argument( | |
"--share-discriminator-maskpredictor", | |
action="store_true", | |
help="share the parameters for both mask-predictor and discriminator", | |
) | |
parser.add_argument( | |
"--sampling-for-deletion", | |
action="store_true", | |
help="instead of argmax, use sampling to predict the tokens", | |
) | |
def build_decoder(cls, args, tgt_dict, embed_tokens): | |
decoder = LevenshteinTransformerDecoder(args, tgt_dict, embed_tokens) | |
if getattr(args, "apply_bert_init", False): | |
decoder.apply(init_bert_params) | |
return decoder | |
def forward( | |
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs | |
): | |
assert tgt_tokens is not None, "forward function only supports training." | |
# encoding | |
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) | |
# generate training labels for insertion | |
masked_tgt_masks, masked_tgt_tokens, mask_ins_targets = _get_ins_targets( | |
prev_output_tokens, tgt_tokens, self.pad, self.unk | |
) | |
mask_ins_targets = mask_ins_targets.clamp(min=0, max=255) # for safe prediction | |
mask_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) | |
mask_ins_out, _ = self.decoder.forward_mask_ins( | |
normalize=False, | |
prev_output_tokens=prev_output_tokens, | |
encoder_out=encoder_out, | |
) | |
word_ins_out, _ = self.decoder.forward_word_ins( | |
normalize=False, | |
prev_output_tokens=masked_tgt_tokens, | |
encoder_out=encoder_out, | |
) | |
# make online prediction | |
if self.decoder.sampling_for_deletion: | |
word_predictions = torch.multinomial( | |
F.softmax(word_ins_out, -1).view(-1, word_ins_out.size(-1)), 1 | |
).view(word_ins_out.size(0), -1) | |
else: | |
word_predictions = F.log_softmax(word_ins_out, dim=-1).max(2)[1] | |
word_predictions.masked_scatter_( | |
~masked_tgt_masks, tgt_tokens[~masked_tgt_masks] | |
) | |
# generate training labels for deletion | |
word_del_targets = _get_del_targets(word_predictions, tgt_tokens, self.pad) | |
word_del_out, _ = self.decoder.forward_word_del( | |
normalize=False, | |
prev_output_tokens=word_predictions, | |
encoder_out=encoder_out, | |
) | |
word_del_masks = word_predictions.ne(self.pad) | |
return { | |
"mask_ins": { | |
"out": mask_ins_out, | |
"tgt": mask_ins_targets, | |
"mask": mask_ins_masks, | |
"ls": 0.01, | |
}, | |
"word_ins": { | |
"out": word_ins_out, | |
"tgt": tgt_tokens, | |
"mask": masked_tgt_masks, | |
"ls": self.args.label_smoothing, | |
"nll_loss": True, | |
}, | |
"word_del": { | |
"out": word_del_out, | |
"tgt": word_del_targets, | |
"mask": word_del_masks, | |
}, | |
} | |
def forward_decoder( | |
self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs | |
): | |
output_tokens = decoder_out.output_tokens | |
output_scores = decoder_out.output_scores | |
attn = decoder_out.attn | |
history = decoder_out.history | |
bsz = output_tokens.size(0) | |
if max_ratio is None: | |
max_lens = torch.zeros_like(output_tokens).fill_(255) | |
else: | |
if not encoder_out["encoder_padding_mask"]: | |
max_src_len = encoder_out["encoder_out"].size(0) | |
src_lens = encoder_out["encoder_out"].new(bsz).fill_(max_src_len) | |
else: | |
src_lens = (~encoder_out["encoder_padding_mask"][0]).sum(1) | |
max_lens = (src_lens * max_ratio).clamp(min=10).long() | |
# delete words | |
# do not delete tokens if it is <s> </s> | |
can_del_word = output_tokens.ne(self.pad).sum(1) > 2 | |
if can_del_word.sum() != 0: # we cannot delete, skip | |
word_del_score, word_del_attn = self.decoder.forward_word_del( | |
normalize=True, | |
prev_output_tokens=_skip(output_tokens, can_del_word), | |
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_del_word), | |
) | |
word_del_pred = word_del_score.max(-1)[1].bool() | |
_tokens, _scores, _attn = _apply_del_words( | |
output_tokens[can_del_word], | |
output_scores[can_del_word], | |
word_del_attn, | |
word_del_pred, | |
self.pad, | |
self.bos, | |
self.eos, | |
) | |
output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) | |
output_scores = _fill(output_scores, can_del_word, _scores, 0) | |
attn = _fill(attn, can_del_word, _attn, 0.0) | |
if history is not None: | |
history.append(output_tokens.clone()) | |
# insert placeholders | |
can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens | |
if can_ins_mask.sum() != 0: | |
mask_ins_score, _ = self.decoder.forward_mask_ins( | |
normalize=True, | |
prev_output_tokens=_skip(output_tokens, can_ins_mask), | |
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_mask), | |
) | |
if eos_penalty > 0.0: | |
mask_ins_score[:, :, 0] = mask_ins_score[:, :, 0] - eos_penalty | |
mask_ins_pred = mask_ins_score.max(-1)[1] | |
mask_ins_pred = torch.min( | |
mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) | |
) | |
_tokens, _scores = _apply_ins_masks( | |
output_tokens[can_ins_mask], | |
output_scores[can_ins_mask], | |
mask_ins_pred, | |
self.pad, | |
self.unk, | |
self.eos, | |
) | |
output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) | |
output_scores = _fill(output_scores, can_ins_mask, _scores, 0) | |
if history is not None: | |
history.append(output_tokens.clone()) | |
# insert words | |
can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 | |
if can_ins_word.sum() != 0: | |
word_ins_score, word_ins_attn = self.decoder.forward_word_ins( | |
normalize=True, | |
prev_output_tokens=_skip(output_tokens, can_ins_word), | |
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_word), | |
) | |
word_ins_score, word_ins_pred = word_ins_score.max(-1) | |
_tokens, _scores = _apply_ins_words( | |
output_tokens[can_ins_word], | |
output_scores[can_ins_word], | |
word_ins_pred, | |
word_ins_score, | |
self.unk, | |
) | |
output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) | |
output_scores = _fill(output_scores, can_ins_word, _scores, 0) | |
attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) | |
if history is not None: | |
history.append(output_tokens.clone()) | |
# delete some unnecessary paddings | |
cut_off = output_tokens.ne(self.pad).sum(1).max() | |
output_tokens = output_tokens[:, :cut_off] | |
output_scores = output_scores[:, :cut_off] | |
attn = None if attn is None else attn[:, :cut_off, :] | |
return decoder_out._replace( | |
output_tokens=output_tokens, | |
output_scores=output_scores, | |
attn=attn, | |
history=history, | |
) | |
def initialize_output_tokens(self, encoder_out, src_tokens): | |
initial_output_tokens = src_tokens.new_zeros(src_tokens.size(0), 2) | |
initial_output_tokens[:, 0] = self.bos | |
initial_output_tokens[:, 1] = self.eos | |
initial_output_scores = initial_output_tokens.new_zeros( | |
*initial_output_tokens.size() | |
).type_as(encoder_out["encoder_out"][0]) | |
return DecoderOut( | |
output_tokens=initial_output_tokens, | |
output_scores=initial_output_scores, | |
attn=None, | |
step=0, | |
max_step=0, | |
history=None, | |
) | |
class LevenshteinTransformerDecoder(FairseqNATDecoder): | |
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): | |
super().__init__( | |
args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn | |
) | |
self.dictionary = dictionary | |
self.bos = dictionary.bos() | |
self.unk = dictionary.unk() | |
self.eos = dictionary.eos() | |
self.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) | |
self.embed_mask_ins = Embedding(256, self.output_embed_dim * 2, None) | |
self.embed_word_del = Embedding(2, self.output_embed_dim, None) | |
# del_word, ins_mask, ins_word | |
self.early_exit = [int(i) for i in args.early_exit.split(",")] | |
assert len(self.early_exit) == 3 | |
# copy layers for mask-predict/deletion | |
self.layers_msk = None | |
if getattr(args, "no_share_maskpredictor", False): | |
self.layers_msk = nn.ModuleList( | |
[ | |
TransformerDecoderLayer(args, no_encoder_attn) | |
for _ in range(self.early_exit[1]) | |
] | |
) | |
self.layers_del = None | |
if getattr(args, "no_share_discriminator", False): | |
self.layers_del = nn.ModuleList( | |
[ | |
TransformerDecoderLayer(args, no_encoder_attn) | |
for _ in range(self.early_exit[0]) | |
] | |
) | |
if getattr(args, "share_discriminator_maskpredictor", False): | |
assert getattr( | |
args, "no_share_discriminator", False | |
), "must set saperate discriminator" | |
self.layers_msk = self.layers_del | |
def extract_features( | |
self, | |
prev_output_tokens, | |
encoder_out=None, | |
early_exit=None, | |
layers=None, | |
**unused | |
): | |
""" | |
Similar to *forward* but only return features. | |
Inputs: | |
prev_output_tokens: Tensor(B, T) | |
encoder_out: a dictionary of hidden states and masks | |
Returns: | |
tuple: | |
- the decoder's features of shape `(batch, tgt_len, embed_dim)` | |
- a dictionary with any model-specific outputs | |
the LevenshteinTransformer decoder has full-attention to all generated tokens | |
""" | |
# embed positions | |
positions = ( | |
self.embed_positions(prev_output_tokens) | |
if self.embed_positions is not None | |
else None | |
) | |
# embed tokens and positions | |
x = self.embed_scale * self.embed_tokens(prev_output_tokens) | |
if self.project_in_dim is not None: | |
x = self.project_in_dim(x) | |
if positions is not None: | |
x += positions | |
x = self.dropout_module(x) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
attn = None | |
inner_states = [x] | |
# decoder layers | |
decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) | |
layers = self.layers if layers is None else layers | |
early_exit = len(layers) if early_exit is None else early_exit | |
for _, layer in enumerate(layers[:early_exit]): | |
x, attn, _ = layer( | |
x, | |
encoder_out["encoder_out"][0] | |
if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) | |
else None, | |
encoder_out["encoder_padding_mask"][0] | |
if ( | |
encoder_out is not None | |
and len(encoder_out["encoder_padding_mask"]) > 0 | |
) | |
else None, | |
self_attn_mask=None, | |
self_attn_padding_mask=decoder_padding_mask, | |
) | |
inner_states.append(x) | |
if self.layer_norm: | |
x = self.layer_norm(x) | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
if self.project_out_dim is not None: | |
x = self.project_out_dim(x) | |
return x, {"attn": attn, "inner_states": inner_states} | |
def forward_mask_ins(self, normalize, encoder_out, prev_output_tokens, **unused): | |
features, extra = self.extract_features( | |
prev_output_tokens, | |
encoder_out=encoder_out, | |
early_exit=self.early_exit[1], | |
layers=self.layers_msk, | |
**unused | |
) | |
features_cat = torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) | |
decoder_out = F.linear(features_cat, self.embed_mask_ins.weight) | |
if normalize: | |
return F.log_softmax(decoder_out, -1), extra["attn"] | |
return decoder_out, extra["attn"] | |
def forward_word_ins(self, normalize, encoder_out, prev_output_tokens, **unused): | |
features, extra = self.extract_features( | |
prev_output_tokens, | |
encoder_out=encoder_out, | |
early_exit=self.early_exit[2], | |
layers=self.layers, | |
**unused | |
) | |
decoder_out = self.output_layer(features) | |
if normalize: | |
return F.log_softmax(decoder_out, -1), extra["attn"] | |
return decoder_out, extra["attn"] | |
def forward_word_del(self, normalize, encoder_out, prev_output_tokens, **unused): | |
features, extra = self.extract_features( | |
prev_output_tokens, | |
encoder_out=encoder_out, | |
early_exit=self.early_exit[0], | |
layers=self.layers_del, | |
**unused | |
) | |
decoder_out = F.linear(features, self.embed_word_del.weight) | |
if normalize: | |
return F.log_softmax(decoder_out, -1), extra["attn"] | |
return decoder_out, extra["attn"] | |
def levenshtein_base_architecture(args): | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr( | |
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.0) | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.adaptive_input = getattr(args, "adaptive_input", False) | |
args.apply_bert_init = getattr(args, "apply_bert_init", False) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
args.early_exit = getattr(args, "early_exit", "6,6,6") | |
args.no_share_discriminator = getattr(args, "no_share_discriminator", False) | |
args.no_share_maskpredictor = getattr(args, "no_share_maskpredictor", False) | |
args.share_discriminator_maskpredictor = getattr( | |
args, "share_discriminator_maskpredictor", False | |
) | |
args.no_share_last_layer = getattr(args, "no_share_last_layer", False) | |
def levenshtein_transformer_wmt_en_de(args): | |
levenshtein_base_architecture(args) | |
# similar parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) | |
def levenshtein_transformer_vaswani_wmt_en_de_big(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) | |
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) | |
args.dropout = getattr(args, "dropout", 0.3) | |
levenshtein_base_architecture(args) | |
# default parameters used in tensor2tensor implementation | |
def levenshtein_transformer_wmt_en_de_big_t2t(args): | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.1) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.1) | |
levenshtein_transformer_vaswani_wmt_en_de_big(args) | |