Spaces:
Runtime error
Runtime error
update
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModel, AutoTokenizer
|
7 |
+
|
8 |
+
import os
|
9 |
+
|
10 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
11 |
+
|
12 |
+
|
13 |
+
@st.cache(allow_output_mutation=True)
|
14 |
+
def load_model_and_tokenizer():
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("kaisugi/scitoricsbert")
|
16 |
+
model = AutoModel.from_pretrained("kaisugi/scitoricsbert")
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
return model, tokenizer
|
20 |
+
|
21 |
+
|
22 |
+
@st.cache(allow_output_mutation=True)
|
23 |
+
def load_sentence_data():
|
24 |
+
sentence_df = pd.read_csv("sentence_data_789k.csv.gz")
|
25 |
+
|
26 |
+
return sentence_df
|
27 |
+
|
28 |
+
|
29 |
+
@st.cache(allow_output_mutation=True)
|
30 |
+
def load_sentence_embeddings():
|
31 |
+
npz_comp = np.load("sentence_embeddings_789k.npz")
|
32 |
+
sentence_embeddings = npz_comp["arr_0"]
|
33 |
+
|
34 |
+
return sentence_embeddings
|
35 |
+
|
36 |
+
|
37 |
+
@st.cache(allow_output_mutation=True)
|
38 |
+
def build_faiss_index(sentence_emeddings):
|
39 |
+
D = 768
|
40 |
+
N = 789188
|
41 |
+
Xt = sentence_emeddings[:39000]
|
42 |
+
X = sentence_emeddings
|
43 |
+
|
44 |
+
# Param of PQ
|
45 |
+
M = 16 # The number of sub-vector. Typically this is 8, 16, 32, etc.
|
46 |
+
nbits = 8 # bits per sub-vector. This is typically 8, so that each sub-vec is encoded by 1 byte
|
47 |
+
# Param of IVF
|
48 |
+
nlist = 1000 # The number of cells (space partition). Typical value is sqrt(N)
|
49 |
+
# Param of HNSW
|
50 |
+
hnsw_m = 32 # The number of neighbors for HNSW. This is typically 32
|
51 |
+
|
52 |
+
# Setup
|
53 |
+
quantizer = faiss.IndexHNSWFlat(D, hnsw_m)
|
54 |
+
index = faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits)
|
55 |
+
|
56 |
+
# Train
|
57 |
+
index.train(Xt)
|
58 |
+
|
59 |
+
# Add
|
60 |
+
index.add(X)
|
61 |
+
|
62 |
+
# Search
|
63 |
+
index.nprobe = 8 # Runtime param. The number of cells that are visited for search.
|
64 |
+
|
65 |
+
return index
|
66 |
+
|
67 |
+
|
68 |
+
@st.cache
|
69 |
+
def get_retrieval_results(index, input_text, top_k, model, tokenizer, sentence_df):
|
70 |
+
with torch.no_grad():
|
71 |
+
inputs = tokenizer.encode_plus(
|
72 |
+
input_text,
|
73 |
+
padding=True,
|
74 |
+
truncation=True,
|
75 |
+
max_length=512,
|
76 |
+
return_tensors='pt'
|
77 |
+
)
|
78 |
+
outputs = model(**inputs)
|
79 |
+
query_embeddings = outputs.last_hidden_state[:, 0, :][0]
|
80 |
+
query_embeddings = query_embeddings.detach().cpu().numpy()
|
81 |
+
query_embeddings = query_embeddings / np.linalg.norm(query_embeddings, ord=2)
|
82 |
+
|
83 |
+
print(np.array([query_embeddings]))
|
84 |
+
|
85 |
+
dists, ids = index.search(x=np.array([query_embeddings]), k=top_k)
|
86 |
+
print(dists)
|
87 |
+
print(ids)
|
88 |
+
|
89 |
+
|
90 |
+
def main(model, tokenizer, sentence_df, sentence_embeddings, index):
|
91 |
+
st.markdown("## AI-based Paraphrasing for Academic Writing")
|
92 |
+
|
93 |
+
input_text = st.text_area("text input", "Model have good results.", placeholder="Write something here...")
|
94 |
+
top_k = st.number_input('top_k', min_value=1, value=10, step=1)
|
95 |
+
|
96 |
+
get_retrieval_results(index, input_text, top_k, model, tokenizer, sentence_df)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
model, tokenizer = load_model_and_tokenizer()
|
101 |
+
sentence_df = load_sentence_data()
|
102 |
+
sentence_emeddings = load_sentence_embeddings()
|
103 |
+
|
104 |
+
faiss.normalize_L2(sentence_emeddings)
|
105 |
+
index = build_faiss_index(sentence_emeddings)
|
106 |
+
|
107 |
+
main(model, tokenizer, sentence_df, sentence_emeddings, index)
|