Spaces:
Runtime error
Runtime error
File size: 91,262 Bytes
6eefbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 |
"""
String transformers that can split and merge strings.
"""
import re
from abc import ABC, abstractmethod
from collections import defaultdict
from dataclasses import dataclass
from typing import (
Any,
Callable,
ClassVar,
Collection,
Dict,
Final,
Iterable,
Iterator,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
TypeVar,
Union,
)
from mypy_extensions import trait
from black.comments import contains_pragma_comment
from black.lines import Line, append_leaves
from black.mode import Feature, Mode
from black.nodes import (
CLOSING_BRACKETS,
OPENING_BRACKETS,
STANDALONE_COMMENT,
is_empty_lpar,
is_empty_par,
is_empty_rpar,
is_part_of_annotation,
parent_type,
replace_child,
syms,
)
from black.rusty import Err, Ok, Result
from black.strings import (
assert_is_leaf_string,
count_chars_in_width,
get_string_prefix,
has_triple_quotes,
normalize_string_quotes,
str_width,
)
from blib2to3.pgen2 import token
from blib2to3.pytree import Leaf, Node
class CannotTransform(Exception):
"""Base class for errors raised by Transformers."""
# types
T = TypeVar("T")
LN = Union[Leaf, Node]
Transformer = Callable[[Line, Collection[Feature], Mode], Iterator[Line]]
Index = int
NodeType = int
ParserState = int
StringID = int
TResult = Result[T, CannotTransform] # (T)ransform Result
TMatchResult = TResult[List[Index]]
SPLIT_SAFE_CHARS = frozenset(["\u3001", "\u3002", "\uff0c"]) # East Asian stops
def TErr(err_msg: str) -> Err[CannotTransform]:
"""(T)ransform Err
Convenience function used when working with the TResult type.
"""
cant_transform = CannotTransform(err_msg)
return Err(cant_transform)
def hug_power_op(
line: Line, features: Collection[Feature], mode: Mode
) -> Iterator[Line]:
"""A transformer which normalizes spacing around power operators."""
# Performance optimization to avoid unnecessary Leaf clones and other ops.
for leaf in line.leaves:
if leaf.type == token.DOUBLESTAR:
break
else:
raise CannotTransform("No doublestar token was found in the line.")
def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
# Brackets and parentheses indicate calls, subscripts, etc. ...
# basically stuff that doesn't count as "simple". Only a NAME lookup
# or dotted lookup (eg. NAME.NAME) is OK.
if step == -1:
disallowed = {token.RPAR, token.RSQB}
else:
disallowed = {token.LPAR, token.LSQB}
while 0 <= index < len(line.leaves):
current = line.leaves[index]
if current.type in disallowed:
return False
if current.type not in {token.NAME, token.DOT} or current.value == "for":
# If the current token isn't disallowed, we'll assume this is simple as
# only the disallowed tokens are semantically attached to this lookup
# expression we're checking. Also, stop early if we hit the 'for' bit
# of a comprehension.
return True
index += step
return True
def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
# An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
# lookup (see above), with or without a preceding unary operator.
start = line.leaves[index]
if start.type in {token.NAME, token.NUMBER}:
return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
if start.type in {token.PLUS, token.MINUS, token.TILDE}:
if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
# step is always one as bases with a preceding unary op will be checked
# for simplicity starting from the next token (so it'll hit the check
# above).
return is_simple_lookup(index + 1, step=1)
return False
new_line = line.clone()
should_hug = False
for idx, leaf in enumerate(line.leaves):
new_leaf = leaf.clone()
if should_hug:
new_leaf.prefix = ""
should_hug = False
should_hug = (
(0 < idx < len(line.leaves) - 1)
and leaf.type == token.DOUBLESTAR
and is_simple_operand(idx - 1, kind="base")
and line.leaves[idx - 1].value != "lambda"
and is_simple_operand(idx + 1, kind="exponent")
)
if should_hug:
new_leaf.prefix = ""
# We have to be careful to make a new line properly:
# - bracket related metadata must be maintained (handled by Line.append)
# - comments need to copied over, updating the leaf IDs they're attached to
new_line.append(new_leaf, preformatted=True)
for comment_leaf in line.comments_after(leaf):
new_line.append(comment_leaf, preformatted=True)
yield new_line
class StringTransformer(ABC):
"""
An implementation of the Transformer protocol that relies on its
subclasses overriding the template methods `do_match(...)` and
`do_transform(...)`.
This Transformer works exclusively on strings (for example, by merging
or splitting them).
The following sections can be found among the docstrings of each concrete
StringTransformer subclass.
Requirements:
Which requirements must be met of the given Line for this
StringTransformer to be applied?
Transformations:
If the given Line meets all of the above requirements, which string
transformations can you expect to be applied to it by this
StringTransformer?
Collaborations:
What contractual agreements does this StringTransformer have with other
StringTransfomers? Such collaborations should be eliminated/minimized
as much as possible.
"""
__name__: Final = "StringTransformer"
# Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
# `abc.ABC`.
def __init__(self, line_length: int, normalize_strings: bool) -> None:
self.line_length = line_length
self.normalize_strings = normalize_strings
@abstractmethod
def do_match(self, line: Line) -> TMatchResult:
"""
Returns:
* Ok(string_indices) such that for each index, `line.leaves[index]`
is our target string if a match was able to be made. For
transformers that don't result in more lines (e.g. StringMerger,
StringParenStripper), multiple matches and transforms are done at
once to reduce the complexity.
OR
* Err(CannotTransform), if no match could be made.
"""
@abstractmethod
def do_transform(
self, line: Line, string_indices: List[int]
) -> Iterator[TResult[Line]]:
"""
Yields:
* Ok(new_line) where new_line is the new transformed line.
OR
* Err(CannotTransform) if the transformation failed for some reason. The
`do_match(...)` template method should usually be used to reject
the form of the given Line, but in some cases it is difficult to
know whether or not a Line meets the StringTransformer's
requirements until the transformation is already midway.
Side Effects:
This method should NOT mutate @line directly, but it MAY mutate the
Line's underlying Node structure. (WARNING: If the underlying Node
structure IS altered, then this method should NOT be allowed to
yield an CannotTransform after that point.)
"""
def __call__(
self, line: Line, _features: Collection[Feature], _mode: Mode
) -> Iterator[Line]:
"""
StringTransformer instances have a call signature that mirrors that of
the Transformer type.
Raises:
CannotTransform(...) if the concrete StringTransformer class is unable
to transform @line.
"""
# Optimization to avoid calling `self.do_match(...)` when the line does
# not contain any string.
if not any(leaf.type == token.STRING for leaf in line.leaves):
raise CannotTransform("There are no strings in this line.")
match_result = self.do_match(line)
if isinstance(match_result, Err):
cant_transform = match_result.err()
raise CannotTransform(
f"The string transformer {self.__class__.__name__} does not recognize"
" this line as one that it can transform."
) from cant_transform
string_indices = match_result.ok()
for line_result in self.do_transform(line, string_indices):
if isinstance(line_result, Err):
cant_transform = line_result.err()
raise CannotTransform(
"StringTransformer failed while attempting to transform string."
) from cant_transform
line = line_result.ok()
yield line
@dataclass
class CustomSplit:
"""A custom (i.e. manual) string split.
A single CustomSplit instance represents a single substring.
Examples:
Consider the following string:
```
"Hi there friend."
" This is a custom"
f" string {split}."
```
This string will correspond to the following three CustomSplit instances:
```
CustomSplit(False, 16)
CustomSplit(False, 17)
CustomSplit(True, 16)
```
"""
has_prefix: bool
break_idx: int
@trait
class CustomSplitMapMixin:
"""
This mixin class is used to map merged strings to a sequence of
CustomSplits, which will then be used to re-split the strings iff none of
the resultant substrings go over the configured max line length.
"""
_Key: ClassVar = Tuple[StringID, str]
_CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
tuple
)
@staticmethod
def _get_key(string: str) -> "CustomSplitMapMixin._Key":
"""
Returns:
A unique identifier that is used internally to map @string to a
group of custom splits.
"""
return (id(string), string)
def add_custom_splits(
self, string: str, custom_splits: Iterable[CustomSplit]
) -> None:
"""Custom Split Map Setter Method
Side Effects:
Adds a mapping from @string to the custom splits @custom_splits.
"""
key = self._get_key(string)
self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
def pop_custom_splits(self, string: str) -> List[CustomSplit]:
"""Custom Split Map Getter Method
Returns:
* A list of the custom splits that are mapped to @string, if any
exist.
OR
* [], otherwise.
Side Effects:
Deletes the mapping between @string and its associated custom
splits (which are returned to the caller).
"""
key = self._get_key(string)
custom_splits = self._CUSTOM_SPLIT_MAP[key]
del self._CUSTOM_SPLIT_MAP[key]
return list(custom_splits)
def has_custom_splits(self, string: str) -> bool:
"""
Returns:
True iff @string is associated with a set of custom splits.
"""
key = self._get_key(string)
return key in self._CUSTOM_SPLIT_MAP
class StringMerger(StringTransformer, CustomSplitMapMixin):
"""StringTransformer that merges strings together.
Requirements:
(A) The line contains adjacent strings such that ALL of the validation checks
listed in StringMerger._validate_msg(...)'s docstring pass.
OR
(B) The line contains a string which uses line continuation backslashes.
Transformations:
Depending on which of the two requirements above where met, either:
(A) The string group associated with the target string is merged.
OR
(B) All line-continuation backslashes are removed from the target string.
Collaborations:
StringMerger provides custom split information to StringSplitter.
"""
def do_match(self, line: Line) -> TMatchResult:
LL = line.leaves
is_valid_index = is_valid_index_factory(LL)
string_indices = []
idx = 0
while is_valid_index(idx):
leaf = LL[idx]
if (
leaf.type == token.STRING
and is_valid_index(idx + 1)
and LL[idx + 1].type == token.STRING
):
if not is_part_of_annotation(leaf):
string_indices.append(idx)
# Advance to the next non-STRING leaf.
idx += 2
while is_valid_index(idx) and LL[idx].type == token.STRING:
idx += 1
elif leaf.type == token.STRING and "\\\n" in leaf.value:
string_indices.append(idx)
# Advance to the next non-STRING leaf.
idx += 1
while is_valid_index(idx) and LL[idx].type == token.STRING:
idx += 1
else:
idx += 1
if string_indices:
return Ok(string_indices)
else:
return TErr("This line has no strings that need merging.")
def do_transform(
self, line: Line, string_indices: List[int]
) -> Iterator[TResult[Line]]:
new_line = line
rblc_result = self._remove_backslash_line_continuation_chars(
new_line, string_indices
)
if isinstance(rblc_result, Ok):
new_line = rblc_result.ok()
msg_result = self._merge_string_group(new_line, string_indices)
if isinstance(msg_result, Ok):
new_line = msg_result.ok()
if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
msg_cant_transform = msg_result.err()
rblc_cant_transform = rblc_result.err()
cant_transform = CannotTransform(
"StringMerger failed to merge any strings in this line."
)
# Chain the errors together using `__cause__`.
msg_cant_transform.__cause__ = rblc_cant_transform
cant_transform.__cause__ = msg_cant_transform
yield Err(cant_transform)
else:
yield Ok(new_line)
@staticmethod
def _remove_backslash_line_continuation_chars(
line: Line, string_indices: List[int]
) -> TResult[Line]:
"""
Merge strings that were split across multiple lines using
line-continuation backslashes.
Returns:
Ok(new_line), if @line contains backslash line-continuation
characters.
OR
Err(CannotTransform), otherwise.
"""
LL = line.leaves
indices_to_transform = []
for string_idx in string_indices:
string_leaf = LL[string_idx]
if (
string_leaf.type == token.STRING
and "\\\n" in string_leaf.value
and not has_triple_quotes(string_leaf.value)
):
indices_to_transform.append(string_idx)
if not indices_to_transform:
return TErr(
"Found no string leaves that contain backslash line continuation"
" characters."
)
new_line = line.clone()
new_line.comments = line.comments.copy()
append_leaves(new_line, line, LL)
for string_idx in indices_to_transform:
new_string_leaf = new_line.leaves[string_idx]
new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
return Ok(new_line)
def _merge_string_group(
self, line: Line, string_indices: List[int]
) -> TResult[Line]:
"""
Merges string groups (i.e. set of adjacent strings).
Each index from `string_indices` designates one string group's first
leaf in `line.leaves`.
Returns:
Ok(new_line), if ALL of the validation checks found in
_validate_msg(...) pass.
OR
Err(CannotTransform), otherwise.
"""
LL = line.leaves
is_valid_index = is_valid_index_factory(LL)
# A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
for string_idx in string_indices:
vresult = self._validate_msg(line, string_idx)
if isinstance(vresult, Err):
continue
merged_string_idx_dict[string_idx] = self._merge_one_string_group(
LL, string_idx, is_valid_index
)
if not merged_string_idx_dict:
return TErr("No string group is merged")
# Build the final line ('new_line') that this method will later return.
new_line = line.clone()
previous_merged_string_idx = -1
previous_merged_num_of_strings = -1
for i, leaf in enumerate(LL):
if i in merged_string_idx_dict:
previous_merged_string_idx = i
previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
new_line.append(string_leaf)
if (
previous_merged_string_idx
<= i
< previous_merged_string_idx + previous_merged_num_of_strings
):
for comment_leaf in line.comments_after(LL[i]):
new_line.append(comment_leaf, preformatted=True)
continue
append_leaves(new_line, line, [leaf])
return Ok(new_line)
def _merge_one_string_group(
self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
) -> Tuple[int, Leaf]:
"""
Merges one string group where the first string in the group is
`LL[string_idx]`.
Returns:
A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
number of strings merged and `leaf` is the newly merged string
to be replaced in the new line.
"""
# If the string group is wrapped inside an Atom node, we must make sure
# to later replace that Atom with our new (merged) string leaf.
atom_node = LL[string_idx].parent
# We will place BREAK_MARK in between every two substrings that we
# merge. We will then later go through our final result and use the
# various instances of BREAK_MARK we find to add the right values to
# the custom split map.
BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
QUOTE = LL[string_idx].value[-1]
def make_naked(string: str, string_prefix: str) -> str:
"""Strip @string (i.e. make it a "naked" string)
Pre-conditions:
* assert_is_leaf_string(@string)
Returns:
A string that is identical to @string except that
@string_prefix has been stripped, the surrounding QUOTE
characters have been removed, and any remaining QUOTE
characters have been escaped.
"""
assert_is_leaf_string(string)
if "f" in string_prefix:
string = _toggle_fexpr_quotes(string, QUOTE)
# After quotes toggling, quotes in expressions won't be escaped
# because quotes can't be reused in f-strings. So we can simply
# let the escaping logic below run without knowing f-string
# expressions.
RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
naked_string = string[len(string_prefix) + 1 : -1]
naked_string = re.sub(
"(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
)
return naked_string
# Holds the CustomSplit objects that will later be added to the custom
# split map.
custom_splits = []
# Temporary storage for the 'has_prefix' part of the CustomSplit objects.
prefix_tracker = []
# Sets the 'prefix' variable. This is the prefix that the final merged
# string will have.
next_str_idx = string_idx
prefix = ""
while (
not prefix
and is_valid_index(next_str_idx)
and LL[next_str_idx].type == token.STRING
):
prefix = get_string_prefix(LL[next_str_idx].value).lower()
next_str_idx += 1
# The next loop merges the string group. The final string will be
# contained in 'S'.
#
# The following convenience variables are used:
#
# S: string
# NS: naked string
# SS: next string
# NSS: naked next string
S = ""
NS = ""
num_of_strings = 0
next_str_idx = string_idx
while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
num_of_strings += 1
SS = LL[next_str_idx].value
next_prefix = get_string_prefix(SS).lower()
# If this is an f-string group but this substring is not prefixed
# with 'f'...
if "f" in prefix and "f" not in next_prefix:
# Then we must escape any braces contained in this substring.
SS = re.sub(r"(\{|\})", r"\1\1", SS)
NSS = make_naked(SS, next_prefix)
has_prefix = bool(next_prefix)
prefix_tracker.append(has_prefix)
S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
NS = make_naked(S, prefix)
next_str_idx += 1
# Take a note on the index of the non-STRING leaf.
non_string_idx = next_str_idx
S_leaf = Leaf(token.STRING, S)
if self.normalize_strings:
S_leaf.value = normalize_string_quotes(S_leaf.value)
# Fill the 'custom_splits' list with the appropriate CustomSplit objects.
temp_string = S_leaf.value[len(prefix) + 1 : -1]
for has_prefix in prefix_tracker:
mark_idx = temp_string.find(BREAK_MARK)
assert (
mark_idx >= 0
), "Logic error while filling the custom string breakpoint cache."
temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
if atom_node is not None:
# If not all children of the atom node are merged (this can happen
# when there is a standalone comment in the middle) ...
if non_string_idx - string_idx < len(atom_node.children):
# We need to replace the old STRING leaves with the new string leaf.
first_child_idx = LL[string_idx].remove()
for idx in range(string_idx + 1, non_string_idx):
LL[idx].remove()
if first_child_idx is not None:
atom_node.insert_child(first_child_idx, string_leaf)
else:
# Else replace the atom node with the new string leaf.
replace_child(atom_node, string_leaf)
self.add_custom_splits(string_leaf.value, custom_splits)
return num_of_strings, string_leaf
@staticmethod
def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
"""Validate (M)erge (S)tring (G)roup
Transform-time string validation logic for _merge_string_group(...).
Returns:
* Ok(None), if ALL validation checks (listed below) pass.
OR
* Err(CannotTransform), if any of the following are true:
- The target string group does not contain ANY stand-alone comments.
- The target string is not in a string group (i.e. it has no
adjacent strings).
- The string group has more than one inline comment.
- The string group has an inline comment that appears to be a pragma.
- The set of all string prefixes in the string group is of
length greater than one and is not equal to {"", "f"}.
- The string group consists of raw strings.
- The string group is stringified type annotations. We don't want to
process stringified type annotations since pyright doesn't support
them spanning multiple string values. (NOTE: mypy, pytype, pyre do
support them, so we can change if pyright also gains support in the
future. See https://github.com/microsoft/pyright/issues/4359.)
"""
# We first check for "inner" stand-alone comments (i.e. stand-alone
# comments that have a string leaf before them AND after them).
for inc in [1, -1]:
i = string_idx
found_sa_comment = False
is_valid_index = is_valid_index_factory(line.leaves)
while is_valid_index(i) and line.leaves[i].type in [
token.STRING,
STANDALONE_COMMENT,
]:
if line.leaves[i].type == STANDALONE_COMMENT:
found_sa_comment = True
elif found_sa_comment:
return TErr(
"StringMerger does NOT merge string groups which contain "
"stand-alone comments."
)
i += inc
num_of_inline_string_comments = 0
set_of_prefixes = set()
num_of_strings = 0
for leaf in line.leaves[string_idx:]:
if leaf.type != token.STRING:
# If the string group is trailed by a comma, we count the
# comments trailing the comma to be one of the string group's
# comments.
if leaf.type == token.COMMA and id(leaf) in line.comments:
num_of_inline_string_comments += 1
break
if has_triple_quotes(leaf.value):
return TErr("StringMerger does NOT merge multiline strings.")
num_of_strings += 1
prefix = get_string_prefix(leaf.value).lower()
if "r" in prefix:
return TErr("StringMerger does NOT merge raw strings.")
set_of_prefixes.add(prefix)
if id(leaf) in line.comments:
num_of_inline_string_comments += 1
if contains_pragma_comment(line.comments[id(leaf)]):
return TErr("Cannot merge strings which have pragma comments.")
if num_of_strings < 2:
return TErr(
f"Not enough strings to merge (num_of_strings={num_of_strings})."
)
if num_of_inline_string_comments > 1:
return TErr(
f"Too many inline string comments ({num_of_inline_string_comments})."
)
if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
return TErr(f"Too many different prefixes ({set_of_prefixes}).")
return Ok(None)
class StringParenStripper(StringTransformer):
"""StringTransformer that strips surrounding parentheses from strings.
Requirements:
The line contains a string which is surrounded by parentheses and:
- The target string is NOT the only argument to a function call.
- The target string is NOT a "pointless" string.
- If the target string contains a PERCENT, the brackets are not
preceded or followed by an operator with higher precedence than
PERCENT.
Transformations:
The parentheses mentioned in the 'Requirements' section are stripped.
Collaborations:
StringParenStripper has its own inherent usefulness, but it is also
relied on to clean up the parentheses created by StringParenWrapper (in
the event that they are no longer needed).
"""
def do_match(self, line: Line) -> TMatchResult:
LL = line.leaves
is_valid_index = is_valid_index_factory(LL)
string_indices = []
idx = -1
while True:
idx += 1
if idx >= len(LL):
break
leaf = LL[idx]
# Should be a string...
if leaf.type != token.STRING:
continue
# If this is a "pointless" string...
if (
leaf.parent
and leaf.parent.parent
and leaf.parent.parent.type == syms.simple_stmt
):
continue
# Should be preceded by a non-empty LPAR...
if (
not is_valid_index(idx - 1)
or LL[idx - 1].type != token.LPAR
or is_empty_lpar(LL[idx - 1])
):
continue
# That LPAR should NOT be preceded by a function name or a closing
# bracket (which could be a function which returns a function or a
# list/dictionary that contains a function)...
if is_valid_index(idx - 2) and (
LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
):
continue
string_idx = idx
# Skip the string trailer, if one exists.
string_parser = StringParser()
next_idx = string_parser.parse(LL, string_idx)
# if the leaves in the parsed string include a PERCENT, we need to
# make sure the initial LPAR is NOT preceded by an operator with
# higher or equal precedence to PERCENT
if is_valid_index(idx - 2):
# mypy can't quite follow unless we name this
before_lpar = LL[idx - 2]
if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
(
before_lpar.type
in {
token.STAR,
token.AT,
token.SLASH,
token.DOUBLESLASH,
token.PERCENT,
token.TILDE,
token.DOUBLESTAR,
token.AWAIT,
token.LSQB,
token.LPAR,
}
)
or (
# only unary PLUS/MINUS
before_lpar.parent
and before_lpar.parent.type == syms.factor
and (before_lpar.type in {token.PLUS, token.MINUS})
)
):
continue
# Should be followed by a non-empty RPAR...
if (
is_valid_index(next_idx)
and LL[next_idx].type == token.RPAR
and not is_empty_rpar(LL[next_idx])
):
# That RPAR should NOT be followed by anything with higher
# precedence than PERCENT
if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
token.DOUBLESTAR,
token.LSQB,
token.LPAR,
token.DOT,
}:
continue
string_indices.append(string_idx)
idx = string_idx
while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
idx += 1
if string_indices:
return Ok(string_indices)
return TErr("This line has no strings wrapped in parens.")
def do_transform(
self, line: Line, string_indices: List[int]
) -> Iterator[TResult[Line]]:
LL = line.leaves
string_and_rpar_indices: List[int] = []
for string_idx in string_indices:
string_parser = StringParser()
rpar_idx = string_parser.parse(LL, string_idx)
should_transform = True
for leaf in (LL[string_idx - 1], LL[rpar_idx]):
if line.comments_after(leaf):
# Should not strip parentheses which have comments attached
# to them.
should_transform = False
break
if should_transform:
string_and_rpar_indices.extend((string_idx, rpar_idx))
if string_and_rpar_indices:
yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
else:
yield Err(
CannotTransform("All string groups have comments attached to them.")
)
def _transform_to_new_line(
self, line: Line, string_and_rpar_indices: List[int]
) -> Line:
LL = line.leaves
new_line = line.clone()
new_line.comments = line.comments.copy()
previous_idx = -1
# We need to sort the indices, since string_idx and its matching
# rpar_idx may not come in order, e.g. in
# `("outer" % ("inner".join(items)))`, the "inner" string's
# string_idx is smaller than "outer" string's rpar_idx.
for idx in sorted(string_and_rpar_indices):
leaf = LL[idx]
lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
if leaf.type == token.STRING:
string_leaf = Leaf(token.STRING, LL[idx].value)
LL[lpar_or_rpar_idx].remove() # Remove lpar.
replace_child(LL[idx], string_leaf)
new_line.append(string_leaf)
else:
LL[lpar_or_rpar_idx].remove() # This is a rpar.
previous_idx = idx
# Append the leaves after the last idx:
append_leaves(new_line, line, LL[idx + 1 :])
return new_line
class BaseStringSplitter(StringTransformer):
"""
Abstract class for StringTransformers which transform a Line's strings by splitting
them or placing them on their own lines where necessary to avoid going over
the configured line length.
Requirements:
* The target string value is responsible for the line going over the
line length limit. It follows that after all of black's other line
split methods have been exhausted, this line (or one of the resulting
lines after all line splits are performed) would still be over the
line_length limit unless we split this string.
AND
* The target string is NOT a "pointless" string (i.e. a string that has
no parent or siblings).
AND
* The target string is not followed by an inline comment that appears
to be a pragma.
AND
* The target string is not a multiline (i.e. triple-quote) string.
"""
STRING_OPERATORS: Final = [
token.EQEQUAL,
token.GREATER,
token.GREATEREQUAL,
token.LESS,
token.LESSEQUAL,
token.NOTEQUAL,
token.PERCENT,
token.PLUS,
token.STAR,
]
@abstractmethod
def do_splitter_match(self, line: Line) -> TMatchResult:
"""
BaseStringSplitter asks its clients to override this method instead of
`StringTransformer.do_match(...)`.
Follows the same protocol as `StringTransformer.do_match(...)`.
Refer to `help(StringTransformer.do_match)` for more information.
"""
def do_match(self, line: Line) -> TMatchResult:
match_result = self.do_splitter_match(line)
if isinstance(match_result, Err):
return match_result
string_indices = match_result.ok()
assert len(string_indices) == 1, (
f"{self.__class__.__name__} should only find one match at a time, found"
f" {len(string_indices)}"
)
string_idx = string_indices[0]
vresult = self._validate(line, string_idx)
if isinstance(vresult, Err):
return vresult
return match_result
def _validate(self, line: Line, string_idx: int) -> TResult[None]:
"""
Checks that @line meets all of the requirements listed in this classes'
docstring. Refer to `help(BaseStringSplitter)` for a detailed
description of those requirements.
Returns:
* Ok(None), if ALL of the requirements are met.
OR
* Err(CannotTransform), if ANY of the requirements are NOT met.
"""
LL = line.leaves
string_leaf = LL[string_idx]
max_string_length = self._get_max_string_length(line, string_idx)
if len(string_leaf.value) <= max_string_length:
return TErr(
"The string itself is not what is causing this line to be too long."
)
if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
token.STRING,
token.NEWLINE,
]:
return TErr(
f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
" no parent)."
)
if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
line.comments[id(line.leaves[string_idx])]
):
return TErr(
"Line appears to end with an inline pragma comment. Splitting the line"
" could modify the pragma's behavior."
)
if has_triple_quotes(string_leaf.value):
return TErr("We cannot split multiline strings.")
return Ok(None)
def _get_max_string_length(self, line: Line, string_idx: int) -> int:
"""
Calculates the max string length used when attempting to determine
whether or not the target string is responsible for causing the line to
go over the line length limit.
WARNING: This method is tightly coupled to both StringSplitter and
(especially) StringParenWrapper. There is probably a better way to
accomplish what is being done here.
Returns:
max_string_length: such that `line.leaves[string_idx].value >
max_string_length` implies that the target string IS responsible
for causing this line to exceed the line length limit.
"""
LL = line.leaves
is_valid_index = is_valid_index_factory(LL)
# We use the shorthand "WMA4" in comments to abbreviate "We must
# account for". When giving examples, we use STRING to mean some/any
# valid string.
#
# Finally, we use the following convenience variables:
#
# P: The leaf that is before the target string leaf.
# N: The leaf that is after the target string leaf.
# NN: The leaf that is after N.
# WMA4 the whitespace at the beginning of the line.
offset = line.depth * 4
if is_valid_index(string_idx - 1):
p_idx = string_idx - 1
if (
LL[string_idx - 1].type == token.LPAR
and LL[string_idx - 1].value == ""
and string_idx >= 2
):
# If the previous leaf is an empty LPAR placeholder, we should skip it.
p_idx -= 1
P = LL[p_idx]
if P.type in self.STRING_OPERATORS:
# WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
offset += len(str(P)) + 1
if P.type == token.COMMA:
# WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
offset += 3
if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
# This conditional branch is meant to handle dictionary keys,
# variable assignments, 'return STRING' statement lines, and
# 'else STRING' ternary expression lines.
# WMA4 a single space.
offset += 1
# WMA4 the lengths of any leaves that came before that space,
# but after any closing bracket before that space.
for leaf in reversed(LL[: p_idx + 1]):
offset += len(str(leaf))
if leaf.type in CLOSING_BRACKETS:
break
if is_valid_index(string_idx + 1):
N = LL[string_idx + 1]
if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
# If the next leaf is an empty RPAR placeholder, we should skip it.
N = LL[string_idx + 2]
if N.type == token.COMMA:
# WMA4 a single comma at the end of the string (e.g `STRING,`).
offset += 1
if is_valid_index(string_idx + 2):
NN = LL[string_idx + 2]
if N.type == token.DOT and NN.type == token.NAME:
# This conditional branch is meant to handle method calls invoked
# off of a string literal up to and including the LPAR character.
# WMA4 the '.' character.
offset += 1
if (
is_valid_index(string_idx + 3)
and LL[string_idx + 3].type == token.LPAR
):
# WMA4 the left parenthesis character.
offset += 1
# WMA4 the length of the method's name.
offset += len(NN.value)
has_comments = False
for comment_leaf in line.comments_after(LL[string_idx]):
if not has_comments:
has_comments = True
# WMA4 two spaces before the '#' character.
offset += 2
# WMA4 the length of the inline comment.
offset += len(comment_leaf.value)
max_string_length = count_chars_in_width(str(line), self.line_length - offset)
return max_string_length
@staticmethod
def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the "prefer paren wrap" statement
requirements listed in the 'Requirements' section of the StringParenWrapper
class's docstring.
OR
None, otherwise.
"""
# The line must start with a string.
if LL[0].type != token.STRING:
return None
matching_nodes = [
syms.listmaker,
syms.dictsetmaker,
syms.testlist_gexp,
]
# If the string is an immediate child of a list/set/tuple literal...
if (
parent_type(LL[0]) in matching_nodes
or parent_type(LL[0].parent) in matching_nodes
):
# And the string is surrounded by commas (or is the first/last child)...
prev_sibling = LL[0].prev_sibling
next_sibling = LL[0].next_sibling
if (
not prev_sibling
and not next_sibling
and parent_type(LL[0]) == syms.atom
):
# If it's an atom string, we need to check the parent atom's siblings.
parent = LL[0].parent
assert parent is not None # For type checkers.
prev_sibling = parent.prev_sibling
next_sibling = parent.next_sibling
if (not prev_sibling or prev_sibling.type == token.COMMA) and (
not next_sibling or next_sibling.type == token.COMMA
):
return 0
return None
def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
"""
Yields spans corresponding to expressions in a given f-string.
Spans are half-open ranges (left inclusive, right exclusive).
Assumes the input string is a valid f-string, but will not crash if the input
string is invalid.
"""
stack: List[int] = [] # our curly paren stack
i = 0
while i < len(s):
if s[i] == "{":
# if we're in a string part of the f-string, ignore escaped curly braces
if not stack and i + 1 < len(s) and s[i + 1] == "{":
i += 2
continue
stack.append(i)
i += 1
continue
if s[i] == "}":
if not stack:
i += 1
continue
j = stack.pop()
# we've made it back out of the expression! yield the span
if not stack:
yield (j, i + 1)
i += 1
continue
# if we're in an expression part of the f-string, fast forward through strings
# note that backslashes are not legal in the expression portion of f-strings
if stack:
delim = None
if s[i : i + 3] in ("'''", '"""'):
delim = s[i : i + 3]
elif s[i] in ("'", '"'):
delim = s[i]
if delim:
i += len(delim)
while i < len(s) and s[i : i + len(delim)] != delim:
i += 1
i += len(delim)
continue
i += 1
def fstring_contains_expr(s: str) -> bool:
return any(iter_fexpr_spans(s))
def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
"""
Toggles quotes used in f-string expressions that are `old_quote`.
f-string expressions can't contain backslashes, so we need to toggle the
quotes if the f-string itself will end up using the same quote. We can
simply toggle without escaping because, quotes can't be reused in f-string
expressions. They will fail to parse.
NOTE: If PEP 701 is accepted, above statement will no longer be true.
Though if quotes can be reused, we can simply reuse them without updates or
escaping, once Black figures out how to parse the new grammar.
"""
new_quote = "'" if old_quote == '"' else '"'
parts = []
previous_index = 0
for start, end in iter_fexpr_spans(fstring):
parts.append(fstring[previous_index:start])
parts.append(fstring[start:end].replace(old_quote, new_quote))
previous_index = end
parts.append(fstring[previous_index:])
return "".join(parts)
class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
"""
StringTransformer that splits "atom" strings (i.e. strings which exist on
lines by themselves).
Requirements:
* The line consists ONLY of a single string (possibly prefixed by a
string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
a trailing comma.
AND
* All of the requirements listed in BaseStringSplitter's docstring.
Transformations:
The string mentioned in the 'Requirements' section is split into as
many substrings as necessary to adhere to the configured line length.
In the final set of substrings, no substring should be smaller than
MIN_SUBSTR_SIZE characters.
The string will ONLY be split on spaces (i.e. each new substring should
start with a space). Note that the string will NOT be split on a space
which is escaped with a backslash.
If the string is an f-string, it will NOT be split in the middle of an
f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
else bar()} is an f-expression).
If the string that is being split has an associated set of custom split
records and those custom splits will NOT result in any line going over
the configured line length, those custom splits are used. Otherwise the
string is split as late as possible (from left-to-right) while still
adhering to the transformation rules listed above.
Collaborations:
StringSplitter relies on StringMerger to construct the appropriate
CustomSplit objects and add them to the custom split map.
"""
MIN_SUBSTR_SIZE: Final = 6
def do_splitter_match(self, line: Line) -> TMatchResult:
LL = line.leaves
if self._prefer_paren_wrap_match(LL) is not None:
return TErr("Line needs to be wrapped in parens first.")
is_valid_index = is_valid_index_factory(LL)
idx = 0
# The first two leaves MAY be the 'not in' keywords...
if (
is_valid_index(idx)
and is_valid_index(idx + 1)
and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
and str(LL[idx]) + str(LL[idx + 1]) == "not in"
):
idx += 2
# Else the first leaf MAY be a string operator symbol or the 'in' keyword...
elif is_valid_index(idx) and (
LL[idx].type in self.STRING_OPERATORS
or LL[idx].type == token.NAME
and str(LL[idx]) == "in"
):
idx += 1
# The next/first leaf MAY be an empty LPAR...
if is_valid_index(idx) and is_empty_lpar(LL[idx]):
idx += 1
# The next/first leaf MUST be a string...
if not is_valid_index(idx) or LL[idx].type != token.STRING:
return TErr("Line does not start with a string.")
string_idx = idx
# Skip the string trailer, if one exists.
string_parser = StringParser()
idx = string_parser.parse(LL, string_idx)
# That string MAY be followed by an empty RPAR...
if is_valid_index(idx) and is_empty_rpar(LL[idx]):
idx += 1
# That string / empty RPAR leaf MAY be followed by a comma...
if is_valid_index(idx) and LL[idx].type == token.COMMA:
idx += 1
# But no more leaves are allowed...
if is_valid_index(idx):
return TErr("This line does not end with a string.")
return Ok([string_idx])
def do_transform(
self, line: Line, string_indices: List[int]
) -> Iterator[TResult[Line]]:
LL = line.leaves
assert len(string_indices) == 1, (
f"{self.__class__.__name__} should only find one match at a time, found"
f" {len(string_indices)}"
)
string_idx = string_indices[0]
QUOTE = LL[string_idx].value[-1]
is_valid_index = is_valid_index_factory(LL)
insert_str_child = insert_str_child_factory(LL[string_idx])
prefix = get_string_prefix(LL[string_idx].value).lower()
# We MAY choose to drop the 'f' prefix from substrings that don't
# contain any f-expressions, but ONLY if the original f-string
# contains at least one f-expression. Otherwise, we will alter the AST
# of the program.
drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
LL[string_idx].value
)
first_string_line = True
string_op_leaves = self._get_string_operator_leaves(LL)
string_op_leaves_length = (
sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
if string_op_leaves
else 0
)
def maybe_append_string_operators(new_line: Line) -> None:
"""
Side Effects:
If @line starts with a string operator and this is the first
line we are constructing, this function appends the string
operator to @new_line and replaces the old string operator leaf
in the node structure. Otherwise this function does nothing.
"""
maybe_prefix_leaves = string_op_leaves if first_string_line else []
for i, prefix_leaf in enumerate(maybe_prefix_leaves):
replace_child(LL[i], prefix_leaf)
new_line.append(prefix_leaf)
ends_with_comma = (
is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
)
def max_last_string_column() -> int:
"""
Returns:
The max allowed width of the string value used for the last
line we will construct. Note that this value means the width
rather than the number of characters (e.g., many East Asian
characters expand to two columns).
"""
result = self.line_length
result -= line.depth * 4
result -= 1 if ends_with_comma else 0
result -= string_op_leaves_length
return result
# --- Calculate Max Break Width (for string value)
# We start with the line length limit
max_break_width = self.line_length
# The last index of a string of length N is N-1.
max_break_width -= 1
# Leading whitespace is not present in the string value (e.g. Leaf.value).
max_break_width -= line.depth * 4
if max_break_width < 0:
yield TErr(
f"Unable to split {LL[string_idx].value} at such high of a line depth:"
f" {line.depth}"
)
return
# Check if StringMerger registered any custom splits.
custom_splits = self.pop_custom_splits(LL[string_idx].value)
# We use them ONLY if none of them would produce lines that exceed the
# line limit.
use_custom_breakpoints = bool(
custom_splits
and all(csplit.break_idx <= max_break_width for csplit in custom_splits)
)
# Temporary storage for the remaining chunk of the string line that
# can't fit onto the line currently being constructed.
rest_value = LL[string_idx].value
def more_splits_should_be_made() -> bool:
"""
Returns:
True iff `rest_value` (the remaining string value from the last
split), should be split again.
"""
if use_custom_breakpoints:
return len(custom_splits) > 1
else:
return str_width(rest_value) > max_last_string_column()
string_line_results: List[Ok[Line]] = []
while more_splits_should_be_made():
if use_custom_breakpoints:
# Custom User Split (manual)
csplit = custom_splits.pop(0)
break_idx = csplit.break_idx
else:
# Algorithmic Split (automatic)
max_bidx = (
count_chars_in_width(rest_value, max_break_width)
- string_op_leaves_length
)
maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
if maybe_break_idx is None:
# If we are unable to algorithmically determine a good split
# and this string has custom splits registered to it, we
# fall back to using them--which means we have to start
# over from the beginning.
if custom_splits:
rest_value = LL[string_idx].value
string_line_results = []
first_string_line = True
use_custom_breakpoints = True
continue
# Otherwise, we stop splitting here.
break
break_idx = maybe_break_idx
# --- Construct `next_value`
next_value = rest_value[:break_idx] + QUOTE
# HACK: The following 'if' statement is a hack to fix the custom
# breakpoint index in the case of either: (a) substrings that were
# f-strings but will have the 'f' prefix removed OR (b) substrings
# that were not f-strings but will now become f-strings because of
# redundant use of the 'f' prefix (i.e. none of the substrings
# contain f-expressions but one or more of them had the 'f' prefix
# anyway; in which case, we will prepend 'f' to _all_ substrings).
#
# There is probably a better way to accomplish what is being done
# here...
#
# If this substring is an f-string, we _could_ remove the 'f'
# prefix, and the current custom split did NOT originally use a
# prefix...
if (
use_custom_breakpoints
and not csplit.has_prefix
and (
# `next_value == prefix + QUOTE` happens when the custom
# split is an empty string.
next_value == prefix + QUOTE
or next_value != self._normalize_f_string(next_value, prefix)
)
):
# Then `csplit.break_idx` will be off by one after removing
# the 'f' prefix.
break_idx += 1
next_value = rest_value[:break_idx] + QUOTE
if drop_pointless_f_prefix:
next_value = self._normalize_f_string(next_value, prefix)
# --- Construct `next_leaf`
next_leaf = Leaf(token.STRING, next_value)
insert_str_child(next_leaf)
self._maybe_normalize_string_quotes(next_leaf)
# --- Construct `next_line`
next_line = line.clone()
maybe_append_string_operators(next_line)
next_line.append(next_leaf)
string_line_results.append(Ok(next_line))
rest_value = prefix + QUOTE + rest_value[break_idx:]
first_string_line = False
yield from string_line_results
if drop_pointless_f_prefix:
rest_value = self._normalize_f_string(rest_value, prefix)
rest_leaf = Leaf(token.STRING, rest_value)
insert_str_child(rest_leaf)
# NOTE: I could not find a test case that verifies that the following
# line is actually necessary, but it seems to be. Otherwise we risk
# not normalizing the last substring, right?
self._maybe_normalize_string_quotes(rest_leaf)
last_line = line.clone()
maybe_append_string_operators(last_line)
# If there are any leaves to the right of the target string...
if is_valid_index(string_idx + 1):
# We use `temp_value` here to determine how long the last line
# would be if we were to append all the leaves to the right of the
# target string to the last string line.
temp_value = rest_value
for leaf in LL[string_idx + 1 :]:
temp_value += str(leaf)
if leaf.type == token.LPAR:
break
# Try to fit them all on the same line with the last substring...
if (
str_width(temp_value) <= max_last_string_column()
or LL[string_idx + 1].type == token.COMMA
):
last_line.append(rest_leaf)
append_leaves(last_line, line, LL[string_idx + 1 :])
yield Ok(last_line)
# Otherwise, place the last substring on one line and everything
# else on a line below that...
else:
last_line.append(rest_leaf)
yield Ok(last_line)
non_string_line = line.clone()
append_leaves(non_string_line, line, LL[string_idx + 1 :])
yield Ok(non_string_line)
# Else the target string was the last leaf...
else:
last_line.append(rest_leaf)
last_line.comments = line.comments.copy()
yield Ok(last_line)
def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
"""
Yields:
All ranges of @string which, if @string were to be split there,
would result in the splitting of an \\N{...} expression (which is NOT
allowed).
"""
# True - the previous backslash was unescaped
# False - the previous backslash was escaped *or* there was no backslash
previous_was_unescaped_backslash = False
it = iter(enumerate(string))
for idx, c in it:
if c == "\\":
previous_was_unescaped_backslash = not previous_was_unescaped_backslash
continue
if not previous_was_unescaped_backslash or c != "N":
previous_was_unescaped_backslash = False
continue
previous_was_unescaped_backslash = False
begin = idx - 1 # the position of backslash before \N{...}
for idx, c in it:
if c == "}":
end = idx
break
else:
# malformed nameescape expression?
# should have been detected by AST parsing earlier...
raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
yield begin, end
def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
"""
Yields:
All ranges of @string which, if @string were to be split there,
would result in the splitting of an f-expression (which is NOT
allowed).
"""
if "f" not in get_string_prefix(string).lower():
return
yield from iter_fexpr_spans(string)
def _get_illegal_split_indices(self, string: str) -> Set[Index]:
illegal_indices: Set[Index] = set()
iterators = [
self._iter_fexpr_slices(string),
self._iter_nameescape_slices(string),
]
for it in iterators:
for begin, end in it:
illegal_indices.update(range(begin, end + 1))
return illegal_indices
def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
"""
This method contains the algorithm that StringSplitter uses to
determine which character to split each string at.
Args:
@string: The substring that we are attempting to split.
@max_break_idx: The ideal break index. We will return this value if it
meets all the necessary conditions. In the likely event that it
doesn't we will try to find the closest index BELOW @max_break_idx
that does. If that fails, we will expand our search by also
considering all valid indices ABOVE @max_break_idx.
Pre-Conditions:
* assert_is_leaf_string(@string)
* 0 <= @max_break_idx < len(@string)
Returns:
break_idx, if an index is able to be found that meets all of the
conditions listed in the 'Transformations' section of this classes'
docstring.
OR
None, otherwise.
"""
is_valid_index = is_valid_index_factory(string)
assert is_valid_index(max_break_idx)
assert_is_leaf_string(string)
_illegal_split_indices = self._get_illegal_split_indices(string)
def breaks_unsplittable_expression(i: Index) -> bool:
"""
Returns:
True iff returning @i would result in the splitting of an
unsplittable expression (which is NOT allowed).
"""
return i in _illegal_split_indices
def passes_all_checks(i: Index) -> bool:
"""
Returns:
True iff ALL of the conditions listed in the 'Transformations'
section of this classes' docstring would be be met by returning @i.
"""
is_space = string[i] == " "
is_split_safe = is_valid_index(i - 1) and string[i - 1] in SPLIT_SAFE_CHARS
is_not_escaped = True
j = i - 1
while is_valid_index(j) and string[j] == "\\":
is_not_escaped = not is_not_escaped
j -= 1
is_big_enough = (
len(string[i:]) >= self.MIN_SUBSTR_SIZE
and len(string[:i]) >= self.MIN_SUBSTR_SIZE
)
return (
(is_space or is_split_safe)
and is_not_escaped
and is_big_enough
and not breaks_unsplittable_expression(i)
)
# First, we check all indices BELOW @max_break_idx.
break_idx = max_break_idx
while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
break_idx -= 1
if not passes_all_checks(break_idx):
# If that fails, we check all indices ABOVE @max_break_idx.
#
# If we are able to find a valid index here, the next line is going
# to be longer than the specified line length, but it's probably
# better than doing nothing at all.
break_idx = max_break_idx + 1
while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
break_idx += 1
if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
return None
return break_idx
def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
if self.normalize_strings:
leaf.value = normalize_string_quotes(leaf.value)
def _normalize_f_string(self, string: str, prefix: str) -> str:
"""
Pre-Conditions:
* assert_is_leaf_string(@string)
Returns:
* If @string is an f-string that contains no f-expressions, we
return a string identical to @string except that the 'f' prefix
has been stripped and all double braces (i.e. '{{' or '}}') have
been normalized (i.e. turned into '{' or '}').
OR
* Otherwise, we return @string.
"""
assert_is_leaf_string(string)
if "f" in prefix and not fstring_contains_expr(string):
new_prefix = prefix.replace("f", "")
temp = string[len(prefix) :]
temp = re.sub(r"\{\{", "{", temp)
temp = re.sub(r"\}\}", "}", temp)
new_string = temp
return f"{new_prefix}{new_string}"
else:
return string
def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
LL = list(leaves)
string_op_leaves = []
i = 0
while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
string_op_leaves.append(prefix_leaf)
i += 1
return string_op_leaves
class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
"""
StringTransformer that wraps strings in parens and then splits at the LPAR.
Requirements:
All of the requirements listed in BaseStringSplitter's docstring in
addition to the requirements listed below:
* The line is a return/yield statement, which returns/yields a string.
OR
* The line is part of a ternary expression (e.g. `x = y if cond else
z`) such that the line starts with `else <string>`, where <string> is
some string.
OR
* The line is an assert statement, which ends with a string.
OR
* The line is an assignment statement (e.g. `x = <string>` or `x +=
<string>`) such that the variable is being assigned the value of some
string.
OR
* The line is a dictionary key assignment where some valid key is being
assigned the value of some string.
OR
* The line is an lambda expression and the value is a string.
OR
* The line starts with an "atom" string that prefers to be wrapped in
parens. It's preferred to be wrapped when it's is an immediate child of
a list/set/tuple literal, AND the string is surrounded by commas (or is
the first/last child).
Transformations:
The chosen string is wrapped in parentheses and then split at the LPAR.
We then have one line which ends with an LPAR and another line that
starts with the chosen string. The latter line is then split again at
the RPAR. This results in the RPAR (and possibly a trailing comma)
being placed on its own line.
NOTE: If any leaves exist to the right of the chosen string (except
for a trailing comma, which would be placed after the RPAR), those
leaves are placed inside the parentheses. In effect, the chosen
string is not necessarily being "wrapped" by parentheses. We can,
however, count on the LPAR being placed directly before the chosen
string.
In other words, StringParenWrapper creates "atom" strings. These
can then be split again by StringSplitter, if necessary.
Collaborations:
In the event that a string line split by StringParenWrapper is
changed such that it no longer needs to be given its own line,
StringParenWrapper relies on StringParenStripper to clean up the
parentheses it created.
For "atom" strings that prefers to be wrapped in parens, it requires
StringSplitter to hold the split until the string is wrapped in parens.
"""
def do_splitter_match(self, line: Line) -> TMatchResult:
LL = line.leaves
if line.leaves[-1].type in OPENING_BRACKETS:
return TErr(
"Cannot wrap parens around a line that ends in an opening bracket."
)
string_idx = (
self._return_match(LL)
or self._else_match(LL)
or self._assert_match(LL)
or self._assign_match(LL)
or self._dict_or_lambda_match(LL)
or self._prefer_paren_wrap_match(LL)
)
if string_idx is not None:
string_value = line.leaves[string_idx].value
# If the string has neither spaces nor East Asian stops...
if not any(
char == " " or char in SPLIT_SAFE_CHARS for char in string_value
):
# And will still violate the line length limit when split...
max_string_width = self.line_length - ((line.depth + 1) * 4)
if str_width(string_value) > max_string_width:
# And has no associated custom splits...
if not self.has_custom_splits(string_value):
# Then we should NOT put this string on its own line.
return TErr(
"We do not wrap long strings in parentheses when the"
" resultant line would still be over the specified line"
" length and can't be split further by StringSplitter."
)
return Ok([string_idx])
return TErr("This line does not contain any non-atomic strings.")
@staticmethod
def _return_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the return/yield statement
requirements listed in the 'Requirements' section of this classes'
docstring.
OR
None, otherwise.
"""
# If this line is apart of a return/yield statement and the first leaf
# contains either the "return" or "yield" keywords...
if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
0
].value in ["return", "yield"]:
is_valid_index = is_valid_index_factory(LL)
idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
# The next visible leaf MUST contain a string...
if is_valid_index(idx) and LL[idx].type == token.STRING:
return idx
return None
@staticmethod
def _else_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the ternary expression
requirements listed in the 'Requirements' section of this classes'
docstring.
OR
None, otherwise.
"""
# If this line is apart of a ternary expression and the first leaf
# contains the "else" keyword...
if (
parent_type(LL[0]) == syms.test
and LL[0].type == token.NAME
and LL[0].value == "else"
):
is_valid_index = is_valid_index_factory(LL)
idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
# The next visible leaf MUST contain a string...
if is_valid_index(idx) and LL[idx].type == token.STRING:
return idx
return None
@staticmethod
def _assert_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the assert statement
requirements listed in the 'Requirements' section of this classes'
docstring.
OR
None, otherwise.
"""
# If this line is apart of an assert statement and the first leaf
# contains the "assert" keyword...
if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
is_valid_index = is_valid_index_factory(LL)
for i, leaf in enumerate(LL):
# We MUST find a comma...
if leaf.type == token.COMMA:
idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
# That comma MUST be followed by a string...
if is_valid_index(idx) and LL[idx].type == token.STRING:
string_idx = idx
# Skip the string trailer, if one exists.
string_parser = StringParser()
idx = string_parser.parse(LL, string_idx)
# But no more leaves are allowed...
if not is_valid_index(idx):
return string_idx
return None
@staticmethod
def _assign_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the assignment statement
requirements listed in the 'Requirements' section of this classes'
docstring.
OR
None, otherwise.
"""
# If this line is apart of an expression statement or is a function
# argument AND the first leaf contains a variable name...
if (
parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
and LL[0].type == token.NAME
):
is_valid_index = is_valid_index_factory(LL)
for i, leaf in enumerate(LL):
# We MUST find either an '=' or '+=' symbol...
if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
# That symbol MUST be followed by a string...
if is_valid_index(idx) and LL[idx].type == token.STRING:
string_idx = idx
# Skip the string trailer, if one exists.
string_parser = StringParser()
idx = string_parser.parse(LL, string_idx)
# The next leaf MAY be a comma iff this line is apart
# of a function argument...
if (
parent_type(LL[0]) == syms.argument
and is_valid_index(idx)
and LL[idx].type == token.COMMA
):
idx += 1
# But no more leaves are allowed...
if not is_valid_index(idx):
return string_idx
return None
@staticmethod
def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
"""
Returns:
string_idx such that @LL[string_idx] is equal to our target (i.e.
matched) string, if this line matches the dictionary key assignment
statement or lambda expression requirements listed in the
'Requirements' section of this classes' docstring.
OR
None, otherwise.
"""
# If this line is a part of a dictionary key assignment or lambda expression...
parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
is_valid_index = is_valid_index_factory(LL)
for i, leaf in enumerate(LL):
# We MUST find a colon, it can either be dict's or lambda's colon...
if leaf.type == token.COLON and i < len(LL) - 1:
idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
# That colon MUST be followed by a string...
if is_valid_index(idx) and LL[idx].type == token.STRING:
string_idx = idx
# Skip the string trailer, if one exists.
string_parser = StringParser()
idx = string_parser.parse(LL, string_idx)
# That string MAY be followed by a comma...
if is_valid_index(idx) and LL[idx].type == token.COMMA:
idx += 1
# But no more leaves are allowed...
if not is_valid_index(idx):
return string_idx
return None
def do_transform(
self, line: Line, string_indices: List[int]
) -> Iterator[TResult[Line]]:
LL = line.leaves
assert len(string_indices) == 1, (
f"{self.__class__.__name__} should only find one match at a time, found"
f" {len(string_indices)}"
)
string_idx = string_indices[0]
is_valid_index = is_valid_index_factory(LL)
insert_str_child = insert_str_child_factory(LL[string_idx])
comma_idx = -1
ends_with_comma = False
if LL[comma_idx].type == token.COMMA:
ends_with_comma = True
leaves_to_steal_comments_from = [LL[string_idx]]
if ends_with_comma:
leaves_to_steal_comments_from.append(LL[comma_idx])
# --- First Line
first_line = line.clone()
left_leaves = LL[:string_idx]
# We have to remember to account for (possibly invisible) LPAR and RPAR
# leaves that already wrapped the target string. If these leaves do
# exist, we will replace them with our own LPAR and RPAR leaves.
old_parens_exist = False
if left_leaves and left_leaves[-1].type == token.LPAR:
old_parens_exist = True
leaves_to_steal_comments_from.append(left_leaves[-1])
left_leaves.pop()
append_leaves(first_line, line, left_leaves)
lpar_leaf = Leaf(token.LPAR, "(")
if old_parens_exist:
replace_child(LL[string_idx - 1], lpar_leaf)
else:
insert_str_child(lpar_leaf)
first_line.append(lpar_leaf)
# We throw inline comments that were originally to the right of the
# target string to the top line. They will now be shown to the right of
# the LPAR.
for leaf in leaves_to_steal_comments_from:
for comment_leaf in line.comments_after(leaf):
first_line.append(comment_leaf, preformatted=True)
yield Ok(first_line)
# --- Middle (String) Line
# We only need to yield one (possibly too long) string line, since the
# `StringSplitter` will break it down further if necessary.
string_value = LL[string_idx].value
string_line = Line(
mode=line.mode,
depth=line.depth + 1,
inside_brackets=True,
should_split_rhs=line.should_split_rhs,
magic_trailing_comma=line.magic_trailing_comma,
)
string_leaf = Leaf(token.STRING, string_value)
insert_str_child(string_leaf)
string_line.append(string_leaf)
old_rpar_leaf = None
if is_valid_index(string_idx + 1):
right_leaves = LL[string_idx + 1 :]
if ends_with_comma:
right_leaves.pop()
if old_parens_exist:
assert right_leaves and right_leaves[-1].type == token.RPAR, (
"Apparently, old parentheses do NOT exist?!"
f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
)
old_rpar_leaf = right_leaves.pop()
elif right_leaves and right_leaves[-1].type == token.RPAR:
# Special case for lambda expressions as dict's value, e.g.:
# my_dict = {
# "key": lambda x: f"formatted: {x},
# }
# After wrapping the dict's value with parentheses, the string is
# followed by a RPAR but its opening bracket is lambda's, not
# the string's:
# "key": (lambda x: f"formatted: {x}),
opening_bracket = right_leaves[-1].opening_bracket
if opening_bracket is not None and opening_bracket in left_leaves:
index = left_leaves.index(opening_bracket)
if (
index > 0
and index < len(left_leaves) - 1
and left_leaves[index - 1].type == token.COLON
and left_leaves[index + 1].value == "lambda"
):
right_leaves.pop()
append_leaves(string_line, line, right_leaves)
yield Ok(string_line)
# --- Last Line
last_line = line.clone()
last_line.bracket_tracker = first_line.bracket_tracker
new_rpar_leaf = Leaf(token.RPAR, ")")
if old_rpar_leaf is not None:
replace_child(old_rpar_leaf, new_rpar_leaf)
else:
insert_str_child(new_rpar_leaf)
last_line.append(new_rpar_leaf)
# If the target string ended with a comma, we place this comma to the
# right of the RPAR on the last line.
if ends_with_comma:
comma_leaf = Leaf(token.COMMA, ",")
replace_child(LL[comma_idx], comma_leaf)
last_line.append(comma_leaf)
yield Ok(last_line)
class StringParser:
"""
A state machine that aids in parsing a string's "trailer", which can be
either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
(varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
varY)`).
NOTE: A new StringParser object MUST be instantiated for each string
trailer we need to parse.
Examples:
We shall assume that `line` equals the `Line` object that corresponds
to the following line of python code:
```
x = "Some {}.".format("String") + some_other_string
```
Furthermore, we will assume that `string_idx` is some index such that:
```
assert line.leaves[string_idx].value == "Some {}."
```
The following code snippet then holds:
```
string_parser = StringParser()
idx = string_parser.parse(line.leaves, string_idx)
assert line.leaves[idx].type == token.PLUS
```
"""
DEFAULT_TOKEN: Final = 20210605
# String Parser States
START: Final = 1
DOT: Final = 2
NAME: Final = 3
PERCENT: Final = 4
SINGLE_FMT_ARG: Final = 5
LPAR: Final = 6
RPAR: Final = 7
DONE: Final = 8
# Lookup Table for Next State
_goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
# A string trailer may start with '.' OR '%'.
(START, token.DOT): DOT,
(START, token.PERCENT): PERCENT,
(START, DEFAULT_TOKEN): DONE,
# A '.' MUST be followed by an attribute or method name.
(DOT, token.NAME): NAME,
# A method name MUST be followed by an '(', whereas an attribute name
# is the last symbol in the string trailer.
(NAME, token.LPAR): LPAR,
(NAME, DEFAULT_TOKEN): DONE,
# A '%' symbol can be followed by an '(' or a single argument (e.g. a
# string or variable name).
(PERCENT, token.LPAR): LPAR,
(PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
# If a '%' symbol is followed by a single argument, that argument is
# the last leaf in the string trailer.
(SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
# If present, a ')' symbol is the last symbol in a string trailer.
# (NOTE: LPARS and nested RPARS are not included in this lookup table,
# since they are treated as a special case by the parsing logic in this
# classes' implementation.)
(RPAR, DEFAULT_TOKEN): DONE,
}
def __init__(self) -> None:
self._state = self.START
self._unmatched_lpars = 0
def parse(self, leaves: List[Leaf], string_idx: int) -> int:
"""
Pre-conditions:
* @leaves[@string_idx].type == token.STRING
Returns:
The index directly after the last leaf which is apart of the string
trailer, if a "trailer" exists.
OR
@string_idx + 1, if no string "trailer" exists.
"""
assert leaves[string_idx].type == token.STRING
idx = string_idx + 1
while idx < len(leaves) and self._next_state(leaves[idx]):
idx += 1
return idx
def _next_state(self, leaf: Leaf) -> bool:
"""
Pre-conditions:
* On the first call to this function, @leaf MUST be the leaf that
was directly after the string leaf in question (e.g. if our target
string is `line.leaves[i]` then the first call to this method must
be `line.leaves[i + 1]`).
* On the next call to this function, the leaf parameter passed in
MUST be the leaf directly following @leaf.
Returns:
True iff @leaf is apart of the string's trailer.
"""
# We ignore empty LPAR or RPAR leaves.
if is_empty_par(leaf):
return True
next_token = leaf.type
if next_token == token.LPAR:
self._unmatched_lpars += 1
current_state = self._state
# The LPAR parser state is a special case. We will return True until we
# find the matching RPAR token.
if current_state == self.LPAR:
if next_token == token.RPAR:
self._unmatched_lpars -= 1
if self._unmatched_lpars == 0:
self._state = self.RPAR
# Otherwise, we use a lookup table to determine the next state.
else:
# If the lookup table matches the current state to the next
# token, we use the lookup table.
if (current_state, next_token) in self._goto:
self._state = self._goto[current_state, next_token]
else:
# Otherwise, we check if a the current state was assigned a
# default.
if (current_state, self.DEFAULT_TOKEN) in self._goto:
self._state = self._goto[current_state, self.DEFAULT_TOKEN]
# If no default has been assigned, then this parser has a logic
# error.
else:
raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
if self._state == self.DONE:
return False
return True
def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
"""
Factory for a convenience function that is used to orphan @string_leaf
and then insert multiple new leaves into the same part of the node
structure that @string_leaf had originally occupied.
Examples:
Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
string_leaf.parent`. Assume the node `N` has the following
original structure:
Node(
expr_stmt, [
Leaf(NAME, 'x'),
Leaf(EQUAL, '='),
Leaf(STRING, '"foo"'),
]
)
We then run the code snippet shown below.
```
insert_str_child = insert_str_child_factory(string_leaf)
lpar = Leaf(token.LPAR, '(')
insert_str_child(lpar)
bar = Leaf(token.STRING, '"bar"')
insert_str_child(bar)
rpar = Leaf(token.RPAR, ')')
insert_str_child(rpar)
```
After which point, it follows that `string_leaf.parent is None` and
the node `N` now has the following structure:
Node(
expr_stmt, [
Leaf(NAME, 'x'),
Leaf(EQUAL, '='),
Leaf(LPAR, '('),
Leaf(STRING, '"bar"'),
Leaf(RPAR, ')'),
]
)
"""
string_parent = string_leaf.parent
string_child_idx = string_leaf.remove()
def insert_str_child(child: LN) -> None:
nonlocal string_child_idx
assert string_parent is not None
assert string_child_idx is not None
string_parent.insert_child(string_child_idx, child)
string_child_idx += 1
return insert_str_child
def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
"""
Examples:
```
my_list = [1, 2, 3]
is_valid_index = is_valid_index_factory(my_list)
assert is_valid_index(0)
assert is_valid_index(2)
assert not is_valid_index(3)
assert not is_valid_index(-1)
```
"""
def is_valid_index(idx: int) -> bool:
"""
Returns:
True iff @idx is positive AND seq[@idx] does NOT raise an
IndexError.
"""
return 0 <= idx < len(seq)
return is_valid_index
|