test
Browse files
app.py
CHANGED
@@ -965,6 +965,21 @@ class DynamicsVisualizer:
|
|
965 |
root / 'log/gs/temp/gs_pred.splat',
|
966 |
rot_rev=True,
|
967 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
968 |
|
969 |
form_video = gr.Video(
|
970 |
label='Predicted video',
|
@@ -993,6 +1008,21 @@ class DynamicsVisualizer:
|
|
993 |
self.wp_device = wp_devices[0]
|
994 |
self.torch_device = torch_devices[0]
|
995 |
os.system('rm -rf ' + str(root / 'log/temp/*'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
996 |
|
997 |
# im_list = []
|
998 |
for i in range(15):
|
@@ -1045,6 +1075,21 @@ class DynamicsVisualizer:
|
|
1045 |
self.state['x_his'] = self.state['x'][None].repeat(self.cfg.sim.n_history, 1, 1)
|
1046 |
self.state['v_his'] *= 0.0
|
1047 |
self.state['v_pred'] *= 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1048 |
|
1049 |
make_video(root / 'log/temp', root / f'log/gs/temp/form_video.mp4', '%04d.png', 5)
|
1050 |
|
|
|
965 |
root / 'log/gs/temp/gs_pred.splat',
|
966 |
rot_rev=True,
|
967 |
)
|
968 |
+
|
969 |
+
for k, v in self.preprocess_metadata.items():
|
970 |
+
self.preprocess_metadata[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
971 |
+
for k, v in self.state.items():
|
972 |
+
self.state[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
973 |
+
for k, v in self.params.items():
|
974 |
+
if isinstance(v, dict):
|
975 |
+
for k2, v2 in v.items():
|
976 |
+
self.params[k][k2] = v2.detach().cpu() if isinstance(v2, torch.Tensor) else v2
|
977 |
+
else:
|
978 |
+
self.params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
979 |
+
for k, v in self.table_params.items():
|
980 |
+
self.table_params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
981 |
+
for k, v in self.gripper_params.items():
|
982 |
+
self.gripper_params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
983 |
|
984 |
form_video = gr.Video(
|
985 |
label='Predicted video',
|
|
|
1008 |
self.wp_device = wp_devices[0]
|
1009 |
self.torch_device = torch_devices[0]
|
1010 |
os.system('rm -rf ' + str(root / 'log/temp/*'))
|
1011 |
+
|
1012 |
+
for k, v in self.preprocess_metadata.items():
|
1013 |
+
self.preprocess_metadata[k] = v.to(self.torch_device) if isinstance(v, torch.Tensor) else v
|
1014 |
+
for k, v in self.state.items():
|
1015 |
+
self.state[k] = v.to(self.torch_device) if isinstance(v, torch.Tensor) else v
|
1016 |
+
for k, v in self.params.items():
|
1017 |
+
if isinstance(v, dict):
|
1018 |
+
for k2, v2 in v.items():
|
1019 |
+
self.params[k][k2] = v2.to(self.torch_device) if isinstance(v2, torch.Tensor) else v2
|
1020 |
+
else:
|
1021 |
+
self.params[k] = v.to(self.torch_device) if isinstance(v, torch.Tensor) else v
|
1022 |
+
for k, v in self.table_params.items():
|
1023 |
+
self.table_params[k] = v.to(self.torch_device) if isinstance(v, torch.Tensor) else v
|
1024 |
+
for k, v in self.gripper_params.items():
|
1025 |
+
self.gripper_params[k] = v.to(self.torch_device) if isinstance(v, torch.Tensor) else v
|
1026 |
|
1027 |
# im_list = []
|
1028 |
for i in range(15):
|
|
|
1075 |
self.state['x_his'] = self.state['x'][None].repeat(self.cfg.sim.n_history, 1, 1)
|
1076 |
self.state['v_his'] *= 0.0
|
1077 |
self.state['v_pred'] *= 0.0
|
1078 |
+
|
1079 |
+
for k, v in self.preprocess_metadata.items():
|
1080 |
+
self.preprocess_metadata[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
1081 |
+
for k, v in self.state.items():
|
1082 |
+
self.state[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
1083 |
+
for k, v in self.params.items():
|
1084 |
+
if isinstance(v, dict):
|
1085 |
+
for k2, v2 in v.items():
|
1086 |
+
self.params[k][k2] = v2.detach().cpu() if isinstance(v2, torch.Tensor) else v2
|
1087 |
+
else:
|
1088 |
+
self.params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
1089 |
+
for k, v in self.table_params.items():
|
1090 |
+
self.table_params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
1091 |
+
for k, v in self.gripper_params.items():
|
1092 |
+
self.gripper_params[k] = v.detach().cpu() if isinstance(v, torch.Tensor) else v
|
1093 |
|
1094 |
make_video(root / 'log/temp', root / f'log/gs/temp/form_video.mp4', '%04d.png', 5)
|
1095 |
|