Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,9 +4,23 @@ import os
|
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
|
| 7 |
-
def
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
@spaces.GPU
|
|
@@ -26,7 +40,7 @@ def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_thresho
|
|
| 26 |
import yolov9
|
| 27 |
|
| 28 |
# Load the model
|
| 29 |
-
model_path =
|
| 30 |
model = yolov9.load(model_path, device="cuda")
|
| 31 |
|
| 32 |
# Set model parameters
|
|
@@ -50,10 +64,7 @@ def app():
|
|
| 50 |
model_path = gr.Dropdown(
|
| 51 |
label="Model",
|
| 52 |
choices=[
|
| 53 |
-
"gelan-c
|
| 54 |
-
"gelan-e.pt",
|
| 55 |
-
"yolov9-c.pt",
|
| 56 |
-
"yolov9-e.pt",
|
| 57 |
],
|
| 58 |
value="gelan-e.pt",
|
| 59 |
)
|
|
@@ -95,6 +106,29 @@ def app():
|
|
| 95 |
outputs=[output_numpy],
|
| 96 |
)
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
gradio_app = gr.Blocks()
|
| 99 |
with gradio_app:
|
| 100 |
gr.HTML(
|
|
|
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
|
| 7 |
+
def attempt_download_from_hub(repo_id, hf_token=None):
|
| 8 |
+
# https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
|
| 9 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
| 10 |
+
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
| 11 |
+
from huggingface_hub.utils._validators import HFValidationError
|
| 12 |
+
try:
|
| 13 |
+
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
|
| 14 |
+
model_file = [f for f in repo_files if f.endswith('.pt')][0]
|
| 15 |
+
file = hf_hub_download(
|
| 16 |
+
repo_id=repo_id,
|
| 17 |
+
filename=model_file,
|
| 18 |
+
repo_type='model',
|
| 19 |
+
token=hf_token,
|
| 20 |
+
)
|
| 21 |
+
return file
|
| 22 |
+
except (RepositoryNotFoundError, HFValidationError):
|
| 23 |
+
return None
|
| 24 |
|
| 25 |
|
| 26 |
@spaces.GPU
|
|
|
|
| 40 |
import yolov9
|
| 41 |
|
| 42 |
# Load the model
|
| 43 |
+
model_path = attempt_download_from_hub(model_id)
|
| 44 |
model = yolov9.load(model_path, device="cuda")
|
| 45 |
|
| 46 |
# Set model parameters
|
|
|
|
| 64 |
model_path = gr.Dropdown(
|
| 65 |
label="Model",
|
| 66 |
choices=[
|
| 67 |
+
"kadirnar/yolov9-gelan-c",
|
|
|
|
|
|
|
|
|
|
| 68 |
],
|
| 69 |
value="gelan-e.pt",
|
| 70 |
)
|
|
|
|
| 106 |
outputs=[output_numpy],
|
| 107 |
)
|
| 108 |
|
| 109 |
+
gr.Examples(
|
| 110 |
+
examples=[
|
| 111 |
+
[
|
| 112 |
+
"data/zidane.jpg",
|
| 113 |
+
"kadirnar/yolov9-gelan-c",
|
| 114 |
+
640,
|
| 115 |
+
0.4,
|
| 116 |
+
0.5,
|
| 117 |
+
],
|
| 118 |
+
],
|
| 119 |
+
fn=yolov9_inference,
|
| 120 |
+
inputs=[
|
| 121 |
+
img_path,
|
| 122 |
+
model_path,
|
| 123 |
+
image_size,
|
| 124 |
+
conf_threshold,
|
| 125 |
+
iou_threshold,
|
| 126 |
+
],
|
| 127 |
+
outputs=[output_numpy],
|
| 128 |
+
cache_examples=True,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
gradio_app = gr.Blocks()
|
| 133 |
with gradio_app:
|
| 134 |
gr.HTML(
|