Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,23 @@ import os
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
@spaces.GPU
|
@@ -26,7 +40,7 @@ def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_thresho
|
|
26 |
import yolov9
|
27 |
|
28 |
# Load the model
|
29 |
-
model_path =
|
30 |
model = yolov9.load(model_path, device="cuda")
|
31 |
|
32 |
# Set model parameters
|
@@ -50,10 +64,7 @@ def app():
|
|
50 |
model_path = gr.Dropdown(
|
51 |
label="Model",
|
52 |
choices=[
|
53 |
-
"gelan-c
|
54 |
-
"gelan-e.pt",
|
55 |
-
"yolov9-c.pt",
|
56 |
-
"yolov9-e.pt",
|
57 |
],
|
58 |
value="gelan-e.pt",
|
59 |
)
|
@@ -95,6 +106,29 @@ def app():
|
|
95 |
outputs=[output_numpy],
|
96 |
)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
gradio_app = gr.Blocks()
|
99 |
with gradio_app:
|
100 |
gr.HTML(
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
|
7 |
+
def attempt_download_from_hub(repo_id, hf_token=None):
|
8 |
+
# https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
|
9 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
10 |
+
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
11 |
+
from huggingface_hub.utils._validators import HFValidationError
|
12 |
+
try:
|
13 |
+
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
|
14 |
+
model_file = [f for f in repo_files if f.endswith('.pt')][0]
|
15 |
+
file = hf_hub_download(
|
16 |
+
repo_id=repo_id,
|
17 |
+
filename=model_file,
|
18 |
+
repo_type='model',
|
19 |
+
token=hf_token,
|
20 |
+
)
|
21 |
+
return file
|
22 |
+
except (RepositoryNotFoundError, HFValidationError):
|
23 |
+
return None
|
24 |
|
25 |
|
26 |
@spaces.GPU
|
|
|
40 |
import yolov9
|
41 |
|
42 |
# Load the model
|
43 |
+
model_path = attempt_download_from_hub(model_id)
|
44 |
model = yolov9.load(model_path, device="cuda")
|
45 |
|
46 |
# Set model parameters
|
|
|
64 |
model_path = gr.Dropdown(
|
65 |
label="Model",
|
66 |
choices=[
|
67 |
+
"kadirnar/yolov9-gelan-c",
|
|
|
|
|
|
|
68 |
],
|
69 |
value="gelan-e.pt",
|
70 |
)
|
|
|
106 |
outputs=[output_numpy],
|
107 |
)
|
108 |
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
[
|
112 |
+
"data/zidane.jpg",
|
113 |
+
"kadirnar/yolov9-gelan-c",
|
114 |
+
640,
|
115 |
+
0.4,
|
116 |
+
0.5,
|
117 |
+
],
|
118 |
+
],
|
119 |
+
fn=yolov9_inference,
|
120 |
+
inputs=[
|
121 |
+
img_path,
|
122 |
+
model_path,
|
123 |
+
image_size,
|
124 |
+
conf_threshold,
|
125 |
+
iou_threshold,
|
126 |
+
],
|
127 |
+
outputs=[output_numpy],
|
128 |
+
cache_examples=True,
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
gradio_app = gr.Blocks()
|
133 |
with gradio_app:
|
134 |
gr.HTML(
|