File size: 3,454 Bytes
f1c31b8
55311cc
de1d17c
f1c31b8
55311cc
a6972d6
f1c31b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8458b85
f1c31b8
 
 
 
 
 
a6972d6
f1c31b8
 
14bbece
de1d17c
14bbece
f1c31b8
 
c1d83a1
 
 
 
 
 
 
 
 
 
 
 
 
6e09873
c1d83a1
 
 
 
 
 
6e09873
c1d83a1
 
 
 
 
 
6e09873
c1d83a1
 
 
 
 
 
6e09873
c1d83a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import spaces
import os

@spaces.GPU
def yolov9_inference(img_path, model_path,image_size, conf_threshold, iou_threshold):
    """
    Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust 
    the input size and apply test time augmentation.
    
    :param model_path: Path to the YOLOv9 model file.
    :param conf_threshold: Confidence threshold for NMS.
    :param iou_threshold: IoU threshold for NMS.
    :param img_path: Path to the image file.
    :param size: Optional, input size for inference.
    :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
    """
    # Import YOLOv9
    import yolov9
    
    # Load the model
    model = yolov9.load(model_path, device="cuda:0")
    
    # Set model parameters
    model.conf = conf_threshold
    model.iou = iou_threshold
    
    # Perform inference
    results = model(img_path, size=image_size)

    # Optionally, show detection bounding boxes on image
    output = results.render()
    
    return output[0]


def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                img_path = gr.Image(type="filepath", label="Image")
                model_path = gr.Dropdown(
                    label="Model",
                    choices=[
                        "gelan-c.pt",
                        "gelan-e.pt",
                        "yolov9-c.pt",
                        "yolov9-e.pt",
                    ],
                    value="gelan-e.pt",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    min=320,
                    max=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    min=0.1,
                    max=1.0,
                    step=0.1,
                    value=0.4,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    min=0.1,
                    max=1.0,
                    step=0.1,
                    value=0.5,
                )
                yolov9_infer = gr.Button(value="Inferince")

            with gr.Column():
                output_numpy = gr.Image(type="numpy",label="Output")

        yolov9_inference.click(
            fn=yolov9_inference,
            inputs=[
                img_path,
                model_path,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_numpy],
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>  | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)