Spaces:
Runtime error
Runtime error
File size: 3,962 Bytes
95e4531 1a7b771 1359190 95e4531 81b62ca 1359190 1a7b771 95e4531 1a7b771 643db09 95e4531 1a7b771 95e4531 1a7b771 95e4531 1a7b771 95e4531 81b62ca 95e4531 1a7b771 95e4531 1a7b771 40ac53b 1359190 95e4531 1359190 95e4531 1359190 95e4531 95f082f 1a7b771 95f082f 95e4531 def5a24 95e4531 def5a24 95e4531 40ac53b 95e4531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from utils import write_video, dummy
from PIL import Image
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import torch
import gradio as gr
orig_prompt = "Create a relaxing atmosphere with the use of plants and other natural elements. Such as a hanging terrarium or a wall-mounted planter. Include plenty of storage options to keep the space organized and clutter-free. Consider adding a vanity with double sinks and plenty of drawers and cabinets. As well as a wall mounted medicine and towel storage."
orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
def stable_diffusion_zoom_out(
repo_id,
original_prompt,
negative_prompt,
steps,
num_frames,
fps
):
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
pipe.set_use_memory_efficient_attention_xformers(True)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
pipe.safety_checker = dummy
current_image = Image.new(mode="RGBA", size=(512,512))
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
mask_image = Image.fromarray(255-mask_image).convert("RGB")
current_image = current_image.convert("RGB")
num_images = 1
prompt = [original_prompt] * num_images
negative_prompt = [negative_prompt] * num_images
images = pipe(prompt=prompt, negative_prompt=negative_prompt, image=current_image, mask_image=mask_image, num_inference_steps=25)[0]
current_image = images[0]
all_frames = []
all_frames.append(current_image)
for i in range(num_frames):
next_image = np.array(current_image.convert("RGBA"))*0
prev_image = current_image.resize((512-2*steps,512-2*steps))
prev_image = prev_image.convert("RGBA")
prev_image = np.array(prev_image)
next_image[:, :, 3] = 1
next_image[steps:512-steps,steps:512-steps,:] = prev_image
prev_image = Image.fromarray(next_image)
current_image = prev_image
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
mask_image = Image.fromarray(255-mask_image).convert("RGB")
current_image = current_image.convert("RGB")
images = pipe(prompt=prompt, negative_prompt=negative_prompt, image=current_image, mask_image=mask_image, num_inference_steps=25)[0]
current_image = images[0]
current_image.paste(prev_image, mask=prev_image)
all_frames.append(current_image)
save_path = "infinite_zoom_out.mp4"
write_video(save_path, all_frames, fps=fps)
return save_path
inputs = [
gr.inputs.Textbox(lines=1, default="stabilityai/stable-diffusion-2-inpainting", label="Model ID"),
gr.inputs.Textbox(lines=5, default=orig_prompt, label="Prompt"),
gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"),
gr.inputs.Slider(minimum=1, maximum=500, default=10, step=10, label="Frames"),
gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS")
]
output = gr.outputs.Video()
examples = [
["stabilityai/stable-diffusion-2-inpainting", orig_prompt, orig_negative_prompt, 32, 50, 16]
]
title = "Stable Diffusion Infinite Zoom Out"
description = """<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/kadirnar/stable-diffusion-2-infinite-zoom-out?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
demo_app = gr.Interface(
fn=stable_diffusion_zoom_out,
description=description,
inputs=inputs,
outputs=output,
title=title,
theme='huggingface',
examples=examples,
cache_examples=True
)
demo_app.launch(debug=True, enable_queue=True)
|