Spaces:
Building
on
A10G
Building
on
A10G
update
Browse files- diffusion_webui/__init__.py +0 -17
- diffusion_webui/diffusion_models/__init__.py +0 -0
- diffusion_webui/diffusion_models/base_controlnet_pipeline.py +0 -31
- diffusion_webui/diffusion_models/controlnet_inpaint_pipeline.py +0 -258
- diffusion_webui/diffusion_models/controlnet_pipeline.py +0 -262
- diffusion_webui/diffusion_models/img2img_app.py +0 -155
- diffusion_webui/diffusion_models/inpaint_app.py +0 -149
- diffusion_webui/diffusion_models/text2img_app.py +0 -173
- diffusion_webui/utils/__init__.py +0 -0
- diffusion_webui/utils/data_utils.py +0 -12
- diffusion_webui/utils/model_list.py +0 -25
- diffusion_webui/utils/preprocces_utils.py +0 -94
- diffusion_webui/utils/scheduler_list.py +0 -39
diffusion_webui/__init__.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
from diffusion_webui.diffusion_models.controlnet_inpaint_pipeline import (
|
2 |
-
StableDiffusionControlNetInpaintGenerator,
|
3 |
-
)
|
4 |
-
from diffusion_webui.diffusion_models.controlnet_pipeline import (
|
5 |
-
StableDiffusionControlNetGenerator,
|
6 |
-
)
|
7 |
-
from diffusion_webui.diffusion_models.img2img_app import (
|
8 |
-
StableDiffusionImage2ImageGenerator,
|
9 |
-
)
|
10 |
-
from diffusion_webui.diffusion_models.inpaint_app import (
|
11 |
-
StableDiffusionInpaintGenerator,
|
12 |
-
)
|
13 |
-
from diffusion_webui.diffusion_models.text2img_app import (
|
14 |
-
StableDiffusionText2ImageGenerator,
|
15 |
-
)
|
16 |
-
|
17 |
-
__version__ = "2.5.0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/__init__.py
DELETED
File without changes
|
diffusion_webui/diffusion_models/base_controlnet_pipeline.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
class ControlnetPipeline:
|
2 |
-
def __init__(self):
|
3 |
-
self.pipe = None
|
4 |
-
|
5 |
-
def load_model(self, stable_model_path: str, controlnet_model_path: str):
|
6 |
-
raise NotImplementedError()
|
7 |
-
|
8 |
-
def load_image(self, image_path: str):
|
9 |
-
raise NotImplementedError()
|
10 |
-
|
11 |
-
def controlnet_preprocces(self, read_image: str):
|
12 |
-
raise NotImplementedError()
|
13 |
-
|
14 |
-
def generate_image(
|
15 |
-
self,
|
16 |
-
image_path: str,
|
17 |
-
stable_model_path: str,
|
18 |
-
controlnet_model_path: str,
|
19 |
-
prompt: str,
|
20 |
-
negative_prompt: str,
|
21 |
-
num_images_per_prompt: int,
|
22 |
-
guidance_scale: int,
|
23 |
-
num_inference_step: int,
|
24 |
-
controlnet_conditioning_scale: int,
|
25 |
-
scheduler: str,
|
26 |
-
seed_generator: int,
|
27 |
-
):
|
28 |
-
raise NotImplementedError()
|
29 |
-
|
30 |
-
def web_interface():
|
31 |
-
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/controlnet_inpaint_pipeline.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
|
8 |
-
ControlnetPipeline,
|
9 |
-
)
|
10 |
-
from diffusion_webui.utils.model_list import (
|
11 |
-
controlnet_model_list,
|
12 |
-
stable_model_list,
|
13 |
-
)
|
14 |
-
from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
|
15 |
-
from diffusion_webui.utils.scheduler_list import (
|
16 |
-
SCHEDULER_MAPPING,
|
17 |
-
get_scheduler,
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
class StableDiffusionControlNetInpaintGenerator(ControlnetPipeline):
|
22 |
-
def __init__(self):
|
23 |
-
super().__init__()
|
24 |
-
|
25 |
-
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
26 |
-
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
|
27 |
-
controlnet = ControlNetModel.from_pretrained(
|
28 |
-
controlnet_model_path, torch_dtype=torch.float16
|
29 |
-
)
|
30 |
-
self.pipe = (
|
31 |
-
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
32 |
-
pretrained_model_name_or_path=stable_model_path,
|
33 |
-
controlnet=controlnet,
|
34 |
-
safety_checker=None,
|
35 |
-
torch_dtype=torch.float16,
|
36 |
-
)
|
37 |
-
)
|
38 |
-
|
39 |
-
self.pipe.model_name = stable_model_path
|
40 |
-
self.pipe.scheduler_name = scheduler
|
41 |
-
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
|
42 |
-
self.pipe.to("cuda")
|
43 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
44 |
-
|
45 |
-
return self.pipe
|
46 |
-
|
47 |
-
def load_image(self, image):
|
48 |
-
image = np.array(image)
|
49 |
-
image = Image.fromarray(image)
|
50 |
-
return image
|
51 |
-
|
52 |
-
def controlnet_preprocces(
|
53 |
-
self,
|
54 |
-
read_image: str,
|
55 |
-
preprocces_type: str,
|
56 |
-
):
|
57 |
-
processed_image = PREPROCCES_DICT[preprocces_type](read_image)
|
58 |
-
return processed_image
|
59 |
-
|
60 |
-
def generate_image(
|
61 |
-
self,
|
62 |
-
image_path: str,
|
63 |
-
stable_model_path: str,
|
64 |
-
controlnet_model_path: str,
|
65 |
-
prompt: str,
|
66 |
-
negative_prompt: str,
|
67 |
-
num_images_per_prompt: int,
|
68 |
-
height: int,
|
69 |
-
width: int,
|
70 |
-
strength: int,
|
71 |
-
guess_mode: bool,
|
72 |
-
guidance_scale: int,
|
73 |
-
num_inference_step: int,
|
74 |
-
controlnet_conditioning_scale: int,
|
75 |
-
scheduler: str,
|
76 |
-
seed_generator: int,
|
77 |
-
preprocces_type: str,
|
78 |
-
):
|
79 |
-
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
80 |
-
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
81 |
-
|
82 |
-
normal_image = self.load_image(image=normal_image)
|
83 |
-
mask_image = self.load_image(image=mask_image)
|
84 |
-
|
85 |
-
control_image = self.controlnet_preprocces(
|
86 |
-
read_image=normal_image, preprocces_type=preprocces_type
|
87 |
-
)
|
88 |
-
pipe = self.load_model(
|
89 |
-
stable_model_path=stable_model_path,
|
90 |
-
controlnet_model_path=controlnet_model_path,
|
91 |
-
scheduler=scheduler,
|
92 |
-
)
|
93 |
-
|
94 |
-
if seed_generator == 0:
|
95 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
96 |
-
generator = torch.manual_seed(random_seed)
|
97 |
-
else:
|
98 |
-
generator = torch.manual_seed(seed_generator)
|
99 |
-
|
100 |
-
output = pipe(
|
101 |
-
prompt=prompt,
|
102 |
-
image=normal_image,
|
103 |
-
height=height,
|
104 |
-
width=width,
|
105 |
-
mask_image=mask_image,
|
106 |
-
strength=strength,
|
107 |
-
guess_mode=guess_mode,
|
108 |
-
control_image=control_image,
|
109 |
-
negative_prompt=negative_prompt,
|
110 |
-
num_images_per_prompt=num_images_per_prompt,
|
111 |
-
num_inference_steps=num_inference_step,
|
112 |
-
guidance_scale=guidance_scale,
|
113 |
-
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
114 |
-
generator=generator,
|
115 |
-
).images
|
116 |
-
|
117 |
-
return output
|
118 |
-
|
119 |
-
def app():
|
120 |
-
with gr.Blocks():
|
121 |
-
with gr.Row():
|
122 |
-
with gr.Column():
|
123 |
-
controlnet_inpaint_image_path = gr.Image(
|
124 |
-
source="upload",
|
125 |
-
tool="sketch",
|
126 |
-
elem_id="image_upload",
|
127 |
-
type="pil",
|
128 |
-
label="Upload",
|
129 |
-
).style(height=260)
|
130 |
-
|
131 |
-
controlnet_inpaint_prompt = gr.Textbox(
|
132 |
-
lines=1, placeholder="Prompt", show_label=False
|
133 |
-
)
|
134 |
-
controlnet_inpaint_negative_prompt = gr.Textbox(
|
135 |
-
lines=1, placeholder="Negative Prompt", show_label=False
|
136 |
-
)
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Column():
|
140 |
-
controlnet_inpaint_stable_model_path = gr.Dropdown(
|
141 |
-
choices=stable_model_list,
|
142 |
-
value=stable_model_list[0],
|
143 |
-
label="Stable Model Path",
|
144 |
-
)
|
145 |
-
controlnet_inpaint_preprocces_type = gr.Dropdown(
|
146 |
-
choices=list(PREPROCCES_DICT.keys()),
|
147 |
-
value=list(PREPROCCES_DICT.keys())[0],
|
148 |
-
label="Preprocess Type",
|
149 |
-
)
|
150 |
-
controlnet_inpaint_conditioning_scale = gr.Slider(
|
151 |
-
minimum=0.0,
|
152 |
-
maximum=1.0,
|
153 |
-
step=0.1,
|
154 |
-
value=1.0,
|
155 |
-
label="ControlNet Conditioning Scale",
|
156 |
-
)
|
157 |
-
controlnet_inpaint_guidance_scale = gr.Slider(
|
158 |
-
minimum=0.1,
|
159 |
-
maximum=15,
|
160 |
-
step=0.1,
|
161 |
-
value=7.5,
|
162 |
-
label="Guidance Scale",
|
163 |
-
)
|
164 |
-
controlnet_inpaint_height = gr.Slider(
|
165 |
-
minimum=128,
|
166 |
-
maximum=1280,
|
167 |
-
step=32,
|
168 |
-
value=512,
|
169 |
-
label="Height",
|
170 |
-
)
|
171 |
-
controlnet_inpaint_width = gr.Slider(
|
172 |
-
minimum=128,
|
173 |
-
maximum=1280,
|
174 |
-
step=32,
|
175 |
-
value=512,
|
176 |
-
label="Width",
|
177 |
-
)
|
178 |
-
controlnet_inpaint_guess_mode = gr.Checkbox(
|
179 |
-
label="Guess Mode"
|
180 |
-
)
|
181 |
-
|
182 |
-
with gr.Column():
|
183 |
-
controlnet_inpaint_model_path = gr.Dropdown(
|
184 |
-
choices=controlnet_model_list,
|
185 |
-
value=controlnet_model_list[0],
|
186 |
-
label="ControlNet Model Path",
|
187 |
-
)
|
188 |
-
controlnet_inpaint_scheduler = gr.Dropdown(
|
189 |
-
choices=list(SCHEDULER_MAPPING.keys()),
|
190 |
-
value=list(SCHEDULER_MAPPING.keys())[0],
|
191 |
-
label="Scheduler",
|
192 |
-
)
|
193 |
-
controlnet_inpaint_strength = gr.Slider(
|
194 |
-
minimum=0.1,
|
195 |
-
maximum=15,
|
196 |
-
step=0.1,
|
197 |
-
value=7.5,
|
198 |
-
label="Strength",
|
199 |
-
)
|
200 |
-
controlnet_inpaint_num_inference_step = gr.Slider(
|
201 |
-
minimum=1,
|
202 |
-
maximum=150,
|
203 |
-
step=1,
|
204 |
-
value=30,
|
205 |
-
label="Num Inference Step",
|
206 |
-
)
|
207 |
-
controlnet_inpaint_num_images_per_prompt = (
|
208 |
-
gr.Slider(
|
209 |
-
minimum=1,
|
210 |
-
maximum=4,
|
211 |
-
step=1,
|
212 |
-
value=1,
|
213 |
-
label="Number Of Images",
|
214 |
-
)
|
215 |
-
)
|
216 |
-
controlnet_inpaint_seed_generator = gr.Slider(
|
217 |
-
minimum=0,
|
218 |
-
maximum=1000000,
|
219 |
-
step=1,
|
220 |
-
value=0,
|
221 |
-
label="Seed(0 for random)",
|
222 |
-
)
|
223 |
-
|
224 |
-
# Button to generate the image
|
225 |
-
controlnet_inpaint_predict_button = gr.Button(
|
226 |
-
value="Generate Image"
|
227 |
-
)
|
228 |
-
|
229 |
-
with gr.Column():
|
230 |
-
# Gallery to display the generated images
|
231 |
-
controlnet_inpaint_output_image = gr.Gallery(
|
232 |
-
label="Generated images",
|
233 |
-
show_label=False,
|
234 |
-
elem_id="gallery",
|
235 |
-
).style(grid=(1, 2))
|
236 |
-
|
237 |
-
controlnet_inpaint_predict_button.click(
|
238 |
-
fn=StableDiffusionControlNetInpaintGenerator().generate_image,
|
239 |
-
inputs=[
|
240 |
-
controlnet_inpaint_image_path,
|
241 |
-
controlnet_inpaint_stable_model_path,
|
242 |
-
controlnet_inpaint_model_path,
|
243 |
-
controlnet_inpaint_prompt,
|
244 |
-
controlnet_inpaint_negative_prompt,
|
245 |
-
controlnet_inpaint_num_images_per_prompt,
|
246 |
-
controlnet_inpaint_height,
|
247 |
-
controlnet_inpaint_width,
|
248 |
-
controlnet_inpaint_strength,
|
249 |
-
controlnet_inpaint_guess_mode,
|
250 |
-
controlnet_inpaint_guidance_scale,
|
251 |
-
controlnet_inpaint_num_inference_step,
|
252 |
-
controlnet_inpaint_conditioning_scale,
|
253 |
-
controlnet_inpaint_scheduler,
|
254 |
-
controlnet_inpaint_seed_generator,
|
255 |
-
controlnet_inpaint_preprocces_type,
|
256 |
-
],
|
257 |
-
outputs=[controlnet_inpaint_output_image],
|
258 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/controlnet_pipeline.py
DELETED
@@ -1,262 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import cv2
|
4 |
-
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
|
8 |
-
ControlnetPipeline,
|
9 |
-
)
|
10 |
-
from diffusion_webui.utils.model_list import (
|
11 |
-
controlnet_model_list,
|
12 |
-
stable_model_list,
|
13 |
-
)
|
14 |
-
from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
|
15 |
-
from diffusion_webui.utils.scheduler_list import (
|
16 |
-
SCHEDULER_MAPPING,
|
17 |
-
get_scheduler,
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
stable_model_list = [
|
22 |
-
"runwayml/stable-diffusion-v1-5",
|
23 |
-
"dreamlike-art/dreamlike-diffusion-1.0",
|
24 |
-
"kadirnar/maturemalemix_v0",
|
25 |
-
"kadirnar/DreamShaper_v6"
|
26 |
-
]
|
27 |
-
|
28 |
-
stable_inpiant_model_list = [
|
29 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
30 |
-
"runwayml/stable-diffusion-inpainting",
|
31 |
-
"saik0s/realistic_vision_inpainting",
|
32 |
-
]
|
33 |
-
|
34 |
-
controlnet_model_list = [
|
35 |
-
"lllyasviel/control_v11p_sd15_canny",
|
36 |
-
"lllyasviel/control_v11f1p_sd15_depth",
|
37 |
-
"lllyasviel/control_v11p_sd15_openpose",
|
38 |
-
"lllyasviel/control_v11p_sd15_scribble",
|
39 |
-
"lllyasviel/control_v11p_sd15_mlsd",
|
40 |
-
"lllyasviel/control_v11e_sd15_shuffle",
|
41 |
-
"lllyasviel/control_v11e_sd15_ip2p",
|
42 |
-
"lllyasviel/control_v11p_sd15_lineart",
|
43 |
-
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
44 |
-
"lllyasviel/control_v11p_sd15_softedge",
|
45 |
-
]
|
46 |
-
|
47 |
-
class StableDiffusionControlNetGenerator(ControlnetPipeline):
|
48 |
-
def __init__(self):
|
49 |
-
self.pipe = None
|
50 |
-
|
51 |
-
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
52 |
-
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
|
53 |
-
controlnet = ControlNetModel.from_pretrained(
|
54 |
-
controlnet_model_path, torch_dtype=torch.float16
|
55 |
-
)
|
56 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
57 |
-
pretrained_model_name_or_path=stable_model_path,
|
58 |
-
controlnet=controlnet,
|
59 |
-
safety_checker=None,
|
60 |
-
torch_dtype=torch.float16,
|
61 |
-
)
|
62 |
-
self.pipe.model_name = stable_model_path
|
63 |
-
self.pipe.scheduler_name = scheduler
|
64 |
-
|
65 |
-
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
|
66 |
-
self.pipe.scheduler_name = scheduler
|
67 |
-
self.pipe.to("cuda")
|
68 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
69 |
-
|
70 |
-
return self.pipe
|
71 |
-
|
72 |
-
|
73 |
-
def controlnet_preprocces(
|
74 |
-
self,
|
75 |
-
read_image: str,
|
76 |
-
preprocces_type: str,
|
77 |
-
):
|
78 |
-
processed_image = PREPROCCES_DICT[preprocces_type](read_image)
|
79 |
-
return processed_image
|
80 |
-
|
81 |
-
def generate_image(
|
82 |
-
self,
|
83 |
-
image_path: str,
|
84 |
-
stable_model_path: str,
|
85 |
-
controlnet_model_path: str,
|
86 |
-
height: int,
|
87 |
-
width: int,
|
88 |
-
guess_mode: bool,
|
89 |
-
controlnet_conditioning_scale: int,
|
90 |
-
prompt: str,
|
91 |
-
negative_prompt: str,
|
92 |
-
num_images_per_prompt: int,
|
93 |
-
guidance_scale: int,
|
94 |
-
num_inference_step: int,
|
95 |
-
scheduler: str,
|
96 |
-
seed_generator: int,
|
97 |
-
preprocces_type: str,
|
98 |
-
):
|
99 |
-
pipe = self.load_model(
|
100 |
-
stable_model_path=stable_model_path,
|
101 |
-
controlnet_model_path=controlnet_model_path,
|
102 |
-
scheduler=scheduler,
|
103 |
-
)
|
104 |
-
if preprocces_type== "ScribbleXDOG":
|
105 |
-
read_image = cv2.imread(image_path)
|
106 |
-
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)[0]
|
107 |
-
controlnet_image = Image.fromarray(controlnet_image)
|
108 |
-
|
109 |
-
elif preprocces_type== "None":
|
110 |
-
controlnet_image = self.controlnet_preprocces(read_image=image_path, preprocces_type=preprocces_type)
|
111 |
-
else:
|
112 |
-
read_image = Image.open(image_path)
|
113 |
-
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)
|
114 |
-
|
115 |
-
if seed_generator == 0:
|
116 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
117 |
-
generator = torch.manual_seed(random_seed)
|
118 |
-
else:
|
119 |
-
generator = torch.manual_seed(seed_generator)
|
120 |
-
|
121 |
-
|
122 |
-
output = pipe(
|
123 |
-
prompt=prompt,
|
124 |
-
height=height,
|
125 |
-
width=width,
|
126 |
-
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
127 |
-
guess_mode=guess_mode,
|
128 |
-
image=controlnet_image,
|
129 |
-
negative_prompt=negative_prompt,
|
130 |
-
num_images_per_prompt=num_images_per_prompt,
|
131 |
-
num_inference_steps=num_inference_step,
|
132 |
-
guidance_scale=guidance_scale,
|
133 |
-
generator=generator,
|
134 |
-
).images
|
135 |
-
|
136 |
-
return output
|
137 |
-
|
138 |
-
def app():
|
139 |
-
with gr.Blocks():
|
140 |
-
with gr.Row():
|
141 |
-
with gr.Column():
|
142 |
-
controlnet_image_path = gr.Image(
|
143 |
-
type="filepath", label="Image"
|
144 |
-
).style(height=260)
|
145 |
-
controlnet_prompt = gr.Textbox(
|
146 |
-
lines=1, placeholder="Prompt", show_label=False
|
147 |
-
)
|
148 |
-
controlnet_negative_prompt = gr.Textbox(
|
149 |
-
lines=1, placeholder="Negative Prompt", show_label=False
|
150 |
-
)
|
151 |
-
|
152 |
-
with gr.Row():
|
153 |
-
with gr.Column():
|
154 |
-
controlnet_stable_model_path = gr.Dropdown(
|
155 |
-
choices=stable_model_list,
|
156 |
-
value=stable_model_list[0],
|
157 |
-
label="Stable Model Path",
|
158 |
-
)
|
159 |
-
controlnet_preprocces_type = gr.Dropdown(
|
160 |
-
choices=list(PREPROCCES_DICT.keys()),
|
161 |
-
value=list(PREPROCCES_DICT.keys())[0],
|
162 |
-
label="Preprocess Type",
|
163 |
-
)
|
164 |
-
controlnet_conditioning_scale = gr.Slider(
|
165 |
-
minimum=0.0,
|
166 |
-
maximum=1.0,
|
167 |
-
step=0.1,
|
168 |
-
value=1.0,
|
169 |
-
label="ControlNet Conditioning Scale",
|
170 |
-
)
|
171 |
-
controlnet_guidance_scale = gr.Slider(
|
172 |
-
minimum=0.1,
|
173 |
-
maximum=15,
|
174 |
-
step=0.1,
|
175 |
-
value=7.5,
|
176 |
-
label="Guidance Scale",
|
177 |
-
)
|
178 |
-
controlnet_height = gr.Slider(
|
179 |
-
minimum=128,
|
180 |
-
maximum=1280,
|
181 |
-
step=32,
|
182 |
-
value=512,
|
183 |
-
label="Height",
|
184 |
-
)
|
185 |
-
controlnet_width = gr.Slider(
|
186 |
-
minimum=128,
|
187 |
-
maximum=1280,
|
188 |
-
step=32,
|
189 |
-
value=512,
|
190 |
-
label="Width",
|
191 |
-
)
|
192 |
-
|
193 |
-
with gr.Row():
|
194 |
-
with gr.Column():
|
195 |
-
controlnet_model_path = gr.Dropdown(
|
196 |
-
choices=controlnet_model_list,
|
197 |
-
value=controlnet_model_list[0],
|
198 |
-
label="ControlNet Model Path",
|
199 |
-
)
|
200 |
-
controlnet_scheduler = gr.Dropdown(
|
201 |
-
choices=list(SCHEDULER_MAPPING.keys()),
|
202 |
-
value=list(SCHEDULER_MAPPING.keys())[0],
|
203 |
-
label="Scheduler",
|
204 |
-
)
|
205 |
-
controlnet_num_inference_step = gr.Slider(
|
206 |
-
minimum=1,
|
207 |
-
maximum=150,
|
208 |
-
step=1,
|
209 |
-
value=30,
|
210 |
-
label="Num Inference Step",
|
211 |
-
)
|
212 |
-
|
213 |
-
controlnet_num_images_per_prompt = gr.Slider(
|
214 |
-
minimum=1,
|
215 |
-
maximum=4,
|
216 |
-
step=1,
|
217 |
-
value=1,
|
218 |
-
label="Number Of Images",
|
219 |
-
)
|
220 |
-
controlnet_seed_generator = gr.Slider(
|
221 |
-
minimum=0,
|
222 |
-
maximum=1000000,
|
223 |
-
step=1,
|
224 |
-
value=0,
|
225 |
-
label="Seed(0 for random)",
|
226 |
-
)
|
227 |
-
controlnet_guess_mode = gr.Checkbox(
|
228 |
-
label="Guess Mode"
|
229 |
-
)
|
230 |
-
|
231 |
-
# Button to generate the image
|
232 |
-
predict_button = gr.Button(value="Generate Image")
|
233 |
-
|
234 |
-
with gr.Column():
|
235 |
-
# Gallery to display the generated images
|
236 |
-
output_image = gr.Gallery(
|
237 |
-
label="Generated images",
|
238 |
-
show_label=False,
|
239 |
-
elem_id="gallery",
|
240 |
-
).style(grid=(1, 2))
|
241 |
-
|
242 |
-
predict_button.click(
|
243 |
-
fn=StableDiffusionControlNetGenerator().generate_image,
|
244 |
-
inputs=[
|
245 |
-
controlnet_image_path,
|
246 |
-
controlnet_stable_model_path,
|
247 |
-
controlnet_model_path,
|
248 |
-
controlnet_height,
|
249 |
-
controlnet_width,
|
250 |
-
controlnet_guess_mode,
|
251 |
-
controlnet_conditioning_scale,
|
252 |
-
controlnet_prompt,
|
253 |
-
controlnet_negative_prompt,
|
254 |
-
controlnet_num_images_per_prompt,
|
255 |
-
controlnet_guidance_scale,
|
256 |
-
controlnet_num_inference_step,
|
257 |
-
controlnet_scheduler,
|
258 |
-
controlnet_seed_generator,
|
259 |
-
controlnet_preprocces_type,
|
260 |
-
],
|
261 |
-
outputs=[output_image],
|
262 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/img2img_app.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
from diffusion_webui.utils.model_list import stable_model_list
|
7 |
-
from diffusion_webui.utils.scheduler_list import (
|
8 |
-
SCHEDULER_MAPPING,
|
9 |
-
get_scheduler,
|
10 |
-
)
|
11 |
-
|
12 |
-
|
13 |
-
class StableDiffusionImage2ImageGenerator:
|
14 |
-
def __init__(self):
|
15 |
-
self.pipe = None
|
16 |
-
|
17 |
-
def load_model(self, stable_model_path, scheduler):
|
18 |
-
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
|
19 |
-
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
20 |
-
stable_model_path, safety_checker=None, torch_dtype=torch.float16
|
21 |
-
)
|
22 |
-
|
23 |
-
self.pipe.model_name = stable_model_path
|
24 |
-
self.pipe.scheduler_name = scheduler
|
25 |
-
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
|
26 |
-
self.pipe.to("cuda")
|
27 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
28 |
-
|
29 |
-
return self.pipe
|
30 |
-
|
31 |
-
def generate_image(
|
32 |
-
self,
|
33 |
-
image_path: str,
|
34 |
-
stable_model_path: str,
|
35 |
-
prompt: str,
|
36 |
-
negative_prompt: str,
|
37 |
-
num_images_per_prompt: int,
|
38 |
-
scheduler: str,
|
39 |
-
guidance_scale: int,
|
40 |
-
num_inference_step: int,
|
41 |
-
seed_generator=0,
|
42 |
-
):
|
43 |
-
pipe = self.load_model(
|
44 |
-
stable_model_path=stable_model_path,
|
45 |
-
scheduler=scheduler,
|
46 |
-
)
|
47 |
-
|
48 |
-
if seed_generator == 0:
|
49 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
50 |
-
generator = torch.manual_seed(random_seed)
|
51 |
-
else:
|
52 |
-
generator = torch.manual_seed(seed_generator)
|
53 |
-
|
54 |
-
image = Image.open(image_path)
|
55 |
-
images = pipe(
|
56 |
-
prompt,
|
57 |
-
image=image,
|
58 |
-
negative_prompt=negative_prompt,
|
59 |
-
num_images_per_prompt=num_images_per_prompt,
|
60 |
-
num_inference_steps=num_inference_step,
|
61 |
-
guidance_scale=guidance_scale,
|
62 |
-
generator=generator,
|
63 |
-
).images
|
64 |
-
|
65 |
-
return images
|
66 |
-
|
67 |
-
def app():
|
68 |
-
with gr.Blocks():
|
69 |
-
with gr.Row():
|
70 |
-
with gr.Column():
|
71 |
-
image2image_image_file = gr.Image(
|
72 |
-
type="filepath", label="Image"
|
73 |
-
).style(height=260)
|
74 |
-
|
75 |
-
image2image_prompt = gr.Textbox(
|
76 |
-
lines=1,
|
77 |
-
placeholder="Prompt",
|
78 |
-
show_label=False,
|
79 |
-
)
|
80 |
-
|
81 |
-
image2image_negative_prompt = gr.Textbox(
|
82 |
-
lines=1,
|
83 |
-
placeholder="Negative Prompt",
|
84 |
-
show_label=False,
|
85 |
-
)
|
86 |
-
|
87 |
-
with gr.Row():
|
88 |
-
with gr.Column():
|
89 |
-
image2image_model_path = gr.Dropdown(
|
90 |
-
choices=stable_model_list,
|
91 |
-
value=stable_model_list[0],
|
92 |
-
label="Stable Model Id",
|
93 |
-
)
|
94 |
-
|
95 |
-
image2image_guidance_scale = gr.Slider(
|
96 |
-
minimum=0.1,
|
97 |
-
maximum=15,
|
98 |
-
step=0.1,
|
99 |
-
value=7.5,
|
100 |
-
label="Guidance Scale",
|
101 |
-
)
|
102 |
-
image2image_num_inference_step = gr.Slider(
|
103 |
-
minimum=1,
|
104 |
-
maximum=100,
|
105 |
-
step=1,
|
106 |
-
value=50,
|
107 |
-
label="Num Inference Step",
|
108 |
-
)
|
109 |
-
with gr.Row():
|
110 |
-
with gr.Column():
|
111 |
-
image2image_scheduler = gr.Dropdown(
|
112 |
-
choices=list(SCHEDULER_MAPPING.keys()),
|
113 |
-
value=list(SCHEDULER_MAPPING.keys())[0],
|
114 |
-
label="Scheduler",
|
115 |
-
)
|
116 |
-
image2image_num_images_per_prompt = gr.Slider(
|
117 |
-
minimum=1,
|
118 |
-
maximum=4,
|
119 |
-
step=1,
|
120 |
-
value=1,
|
121 |
-
label="Number Of Images",
|
122 |
-
)
|
123 |
-
|
124 |
-
image2image_seed_generator = gr.Slider(
|
125 |
-
minimum=0,
|
126 |
-
maximum=1000000,
|
127 |
-
step=1,
|
128 |
-
value=0,
|
129 |
-
label="Seed(0 for random)",
|
130 |
-
)
|
131 |
-
|
132 |
-
image2image_predict_button = gr.Button(value="Generator")
|
133 |
-
|
134 |
-
with gr.Column():
|
135 |
-
output_image = gr.Gallery(
|
136 |
-
label="Generated images",
|
137 |
-
show_label=False,
|
138 |
-
elem_id="gallery",
|
139 |
-
).style(grid=(1, 2))
|
140 |
-
|
141 |
-
image2image_predict_button.click(
|
142 |
-
fn=StableDiffusionImage2ImageGenerator().generate_image,
|
143 |
-
inputs=[
|
144 |
-
image2image_image_file,
|
145 |
-
image2image_model_path,
|
146 |
-
image2image_prompt,
|
147 |
-
image2image_negative_prompt,
|
148 |
-
image2image_num_images_per_prompt,
|
149 |
-
image2image_scheduler,
|
150 |
-
image2image_guidance_scale,
|
151 |
-
image2image_num_inference_step,
|
152 |
-
image2image_seed_generator,
|
153 |
-
],
|
154 |
-
outputs=[output_image],
|
155 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/inpaint_app.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from diffusers import DiffusionPipeline
|
4 |
-
|
5 |
-
from diffusion_webui.utils.model_list import stable_inpiant_model_list
|
6 |
-
|
7 |
-
|
8 |
-
class StableDiffusionInpaintGenerator:
|
9 |
-
def __init__(self):
|
10 |
-
self.pipe = None
|
11 |
-
|
12 |
-
def load_model(self, stable_model_path):
|
13 |
-
if self.pipe is None or self.pipe.model_name != stable_model_path:
|
14 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
15 |
-
stable_model_path, revision="fp16", torch_dtype=torch.float16
|
16 |
-
)
|
17 |
-
self.pipe.to("cuda")
|
18 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
19 |
-
self.pipe.model_name = stable_model_path
|
20 |
-
|
21 |
-
|
22 |
-
return self.pipe
|
23 |
-
|
24 |
-
def generate_image(
|
25 |
-
self,
|
26 |
-
pil_image: str,
|
27 |
-
stable_model_path: str,
|
28 |
-
prompt: str,
|
29 |
-
negative_prompt: str,
|
30 |
-
num_images_per_prompt: int,
|
31 |
-
guidance_scale: int,
|
32 |
-
num_inference_step: int,
|
33 |
-
seed_generator=0,
|
34 |
-
):
|
35 |
-
image = pil_image["image"].convert("RGB").resize((512, 512))
|
36 |
-
mask_image = pil_image["mask"].convert("RGB").resize((512, 512))
|
37 |
-
pipe = self.load_model(stable_model_path)
|
38 |
-
|
39 |
-
if seed_generator == 0:
|
40 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
41 |
-
generator = torch.manual_seed(random_seed)
|
42 |
-
else:
|
43 |
-
generator = torch.manual_seed(seed_generator)
|
44 |
-
|
45 |
-
output = pipe(
|
46 |
-
prompt=prompt,
|
47 |
-
image=image,
|
48 |
-
mask_image=mask_image,
|
49 |
-
negative_prompt=negative_prompt,
|
50 |
-
num_images_per_prompt=num_images_per_prompt,
|
51 |
-
num_inference_steps=num_inference_step,
|
52 |
-
guidance_scale=guidance_scale,
|
53 |
-
generator=generator,
|
54 |
-
).images
|
55 |
-
|
56 |
-
return output
|
57 |
-
|
58 |
-
def app():
|
59 |
-
with gr.Blocks():
|
60 |
-
with gr.Row():
|
61 |
-
with gr.Column():
|
62 |
-
stable_diffusion_inpaint_image_file = gr.Image(
|
63 |
-
source="upload",
|
64 |
-
tool="sketch",
|
65 |
-
elem_id="image_upload",
|
66 |
-
type="pil",
|
67 |
-
label="Upload",
|
68 |
-
).style(height=260)
|
69 |
-
|
70 |
-
stable_diffusion_inpaint_prompt = gr.Textbox(
|
71 |
-
lines=1,
|
72 |
-
placeholder="Prompt",
|
73 |
-
show_label=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
stable_diffusion_inpaint_negative_prompt = gr.Textbox(
|
77 |
-
lines=1,
|
78 |
-
placeholder="Negative Prompt",
|
79 |
-
show_label=False,
|
80 |
-
)
|
81 |
-
stable_diffusion_inpaint_model_id = gr.Dropdown(
|
82 |
-
choices=stable_inpiant_model_list,
|
83 |
-
value=stable_inpiant_model_list[0],
|
84 |
-
label="Inpaint Model Id",
|
85 |
-
)
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Column():
|
88 |
-
stable_diffusion_inpaint_guidance_scale = gr.Slider(
|
89 |
-
minimum=0.1,
|
90 |
-
maximum=15,
|
91 |
-
step=0.1,
|
92 |
-
value=7.5,
|
93 |
-
label="Guidance Scale",
|
94 |
-
)
|
95 |
-
|
96 |
-
stable_diffusion_inpaint_num_inference_step = (
|
97 |
-
gr.Slider(
|
98 |
-
minimum=1,
|
99 |
-
maximum=100,
|
100 |
-
step=1,
|
101 |
-
value=50,
|
102 |
-
label="Num Inference Step",
|
103 |
-
)
|
104 |
-
)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
with gr.Column():
|
108 |
-
stable_diffusion_inpiant_num_images_per_prompt = gr.Slider(
|
109 |
-
minimum=1,
|
110 |
-
maximum=4,
|
111 |
-
step=1,
|
112 |
-
value=1,
|
113 |
-
label="Number Of Images",
|
114 |
-
)
|
115 |
-
stable_diffusion_inpaint_seed_generator = (
|
116 |
-
gr.Slider(
|
117 |
-
minimum=0,
|
118 |
-
maximum=1000000,
|
119 |
-
step=1,
|
120 |
-
value=0,
|
121 |
-
label="Seed(0 for random)",
|
122 |
-
)
|
123 |
-
)
|
124 |
-
|
125 |
-
stable_diffusion_inpaint_predict = gr.Button(
|
126 |
-
value="Generator"
|
127 |
-
)
|
128 |
-
|
129 |
-
with gr.Column():
|
130 |
-
output_image = gr.Gallery(
|
131 |
-
label="Generated images",
|
132 |
-
show_label=False,
|
133 |
-
elem_id="gallery",
|
134 |
-
).style(grid=(1, 2))
|
135 |
-
|
136 |
-
stable_diffusion_inpaint_predict.click(
|
137 |
-
fn=StableDiffusionInpaintGenerator().generate_image,
|
138 |
-
inputs=[
|
139 |
-
stable_diffusion_inpaint_image_file,
|
140 |
-
stable_diffusion_inpaint_model_id,
|
141 |
-
stable_diffusion_inpaint_prompt,
|
142 |
-
stable_diffusion_inpaint_negative_prompt,
|
143 |
-
stable_diffusion_inpiant_num_images_per_prompt,
|
144 |
-
stable_diffusion_inpaint_guidance_scale,
|
145 |
-
stable_diffusion_inpaint_num_inference_step,
|
146 |
-
stable_diffusion_inpaint_seed_generator,
|
147 |
-
],
|
148 |
-
outputs=[output_image],
|
149 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/diffusion_models/text2img_app.py
DELETED
@@ -1,173 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from diffusers import StableDiffusionPipeline,DiffusionPipeline
|
4 |
-
|
5 |
-
from diffusion_webui.utils.model_list import stable_model_list
|
6 |
-
from diffusion_webui.utils.scheduler_list import (
|
7 |
-
SCHEDULER_MAPPING,
|
8 |
-
get_scheduler,
|
9 |
-
)
|
10 |
-
|
11 |
-
|
12 |
-
class StableDiffusionText2ImageGenerator:
|
13 |
-
def __init__(self):
|
14 |
-
self.pipe = None
|
15 |
-
|
16 |
-
def load_model(
|
17 |
-
self,
|
18 |
-
stable_model_path,
|
19 |
-
scheduler,
|
20 |
-
):
|
21 |
-
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
|
22 |
-
if stable_model_path == "stabilityai/stable-diffusion-xl-base-0.9":
|
23 |
-
self.pipe = DiffusionPipeline.from_pretrained(
|
24 |
-
stable_model_path, safety_checker=None, torch_dtype=torch.float16
|
25 |
-
)
|
26 |
-
else:
|
27 |
-
self.pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
-
stable_model_path, safety_checker=None, torch_dtype=torch.float16
|
29 |
-
)
|
30 |
-
|
31 |
-
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
|
32 |
-
self.pipe.to("cuda")
|
33 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
34 |
-
self.pipe.model_name = stable_model_path
|
35 |
-
self.pipe.scheduler_name = scheduler
|
36 |
-
|
37 |
-
return self.pipe
|
38 |
-
|
39 |
-
def generate_image(
|
40 |
-
self,
|
41 |
-
stable_model_path: str,
|
42 |
-
prompt: str,
|
43 |
-
negative_prompt: str,
|
44 |
-
num_images_per_prompt: int,
|
45 |
-
scheduler: str,
|
46 |
-
guidance_scale: int,
|
47 |
-
num_inference_step: int,
|
48 |
-
height: int,
|
49 |
-
width: int,
|
50 |
-
seed_generator=0,
|
51 |
-
):
|
52 |
-
pipe = self.load_model(
|
53 |
-
stable_model_path=stable_model_path,
|
54 |
-
scheduler=scheduler,
|
55 |
-
)
|
56 |
-
if seed_generator == 0:
|
57 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
58 |
-
generator = torch.manual_seed(random_seed)
|
59 |
-
else:
|
60 |
-
generator = torch.manual_seed(seed_generator)
|
61 |
-
|
62 |
-
images = pipe(
|
63 |
-
prompt=prompt,
|
64 |
-
height=height,
|
65 |
-
width=width,
|
66 |
-
negative_prompt=negative_prompt,
|
67 |
-
num_images_per_prompt=num_images_per_prompt,
|
68 |
-
num_inference_steps=num_inference_step,
|
69 |
-
guidance_scale=guidance_scale,
|
70 |
-
generator=generator,
|
71 |
-
).images
|
72 |
-
|
73 |
-
return images
|
74 |
-
|
75 |
-
def app():
|
76 |
-
with gr.Blocks():
|
77 |
-
with gr.Row():
|
78 |
-
with gr.Column():
|
79 |
-
text2image_prompt = gr.Textbox(
|
80 |
-
lines=1,
|
81 |
-
placeholder="Prompt",
|
82 |
-
show_label=False,
|
83 |
-
)
|
84 |
-
|
85 |
-
text2image_negative_prompt = gr.Textbox(
|
86 |
-
lines=1,
|
87 |
-
placeholder="Negative Prompt",
|
88 |
-
show_label=False,
|
89 |
-
)
|
90 |
-
with gr.Row():
|
91 |
-
with gr.Column():
|
92 |
-
text2image_model_path = gr.Dropdown(
|
93 |
-
choices=stable_model_list,
|
94 |
-
value=stable_model_list[0],
|
95 |
-
label="Text-Image Model Id",
|
96 |
-
)
|
97 |
-
|
98 |
-
text2image_guidance_scale = gr.Slider(
|
99 |
-
minimum=0.1,
|
100 |
-
maximum=15,
|
101 |
-
step=0.1,
|
102 |
-
value=7.5,
|
103 |
-
label="Guidance Scale",
|
104 |
-
)
|
105 |
-
|
106 |
-
text2image_num_inference_step = gr.Slider(
|
107 |
-
minimum=1,
|
108 |
-
maximum=100,
|
109 |
-
step=1,
|
110 |
-
value=50,
|
111 |
-
label="Num Inference Step",
|
112 |
-
)
|
113 |
-
text2image_num_images_per_prompt = gr.Slider(
|
114 |
-
minimum=1,
|
115 |
-
maximum=4,
|
116 |
-
step=1,
|
117 |
-
value=1,
|
118 |
-
label="Number Of Images",
|
119 |
-
)
|
120 |
-
with gr.Row():
|
121 |
-
with gr.Column():
|
122 |
-
text2image_scheduler = gr.Dropdown(
|
123 |
-
choices=list(SCHEDULER_MAPPING.keys()),
|
124 |
-
value=list(SCHEDULER_MAPPING.keys())[0],
|
125 |
-
label="Scheduler",
|
126 |
-
)
|
127 |
-
|
128 |
-
text2image_height = gr.Slider(
|
129 |
-
minimum=128,
|
130 |
-
maximum=1280,
|
131 |
-
step=32,
|
132 |
-
value=512,
|
133 |
-
label="Image Height",
|
134 |
-
)
|
135 |
-
|
136 |
-
text2image_width = gr.Slider(
|
137 |
-
minimum=128,
|
138 |
-
maximum=1280,
|
139 |
-
step=32,
|
140 |
-
value=512,
|
141 |
-
label="Image Width",
|
142 |
-
)
|
143 |
-
text2image_seed_generator = gr.Slider(
|
144 |
-
label="Seed(0 for random)",
|
145 |
-
minimum=0,
|
146 |
-
maximum=1000000,
|
147 |
-
value=0,
|
148 |
-
)
|
149 |
-
text2image_predict = gr.Button(value="Generator")
|
150 |
-
|
151 |
-
with gr.Column():
|
152 |
-
output_image = gr.Gallery(
|
153 |
-
label="Generated images",
|
154 |
-
show_label=False,
|
155 |
-
elem_id="gallery",
|
156 |
-
).style(grid=(1, 2), height=200)
|
157 |
-
|
158 |
-
text2image_predict.click(
|
159 |
-
fn=StableDiffusionText2ImageGenerator().generate_image,
|
160 |
-
inputs=[
|
161 |
-
text2image_model_path,
|
162 |
-
text2image_prompt,
|
163 |
-
text2image_negative_prompt,
|
164 |
-
text2image_num_images_per_prompt,
|
165 |
-
text2image_scheduler,
|
166 |
-
text2image_guidance_scale,
|
167 |
-
text2image_num_inference_step,
|
168 |
-
text2image_height,
|
169 |
-
text2image_width,
|
170 |
-
text2image_seed_generator,
|
171 |
-
],
|
172 |
-
outputs=output_image,
|
173 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/utils/__init__.py
DELETED
File without changes
|
diffusion_webui/utils/data_utils.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
|
3 |
-
|
4 |
-
def image_grid(imgs, rows, cols):
|
5 |
-
assert len(imgs) == rows * cols
|
6 |
-
|
7 |
-
w, h = imgs[0].size
|
8 |
-
grid = Image.new("RGB", size=(cols * w, rows * h))
|
9 |
-
|
10 |
-
for i, img in enumerate(imgs):
|
11 |
-
grid.paste(img, box=(i % cols * w, i // cols * h))
|
12 |
-
return grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/utils/model_list.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
stable_model_list = [
|
2 |
-
"runwayml/stable-diffusion-v1-5",
|
3 |
-
"SG161222/Realistic_Vision_V2.0",
|
4 |
-
"stablediffusionapi/cyberrealistic",
|
5 |
-
"SG161222/Realistic_Vision_V5.1_noVAE",
|
6 |
-
]
|
7 |
-
|
8 |
-
stable_inpiant_model_list = [
|
9 |
-
"kadirnar/Realistic51-Inpaint",
|
10 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
11 |
-
"runwayml/stable-diffusion-inpainting",
|
12 |
-
]
|
13 |
-
|
14 |
-
controlnet_model_list = [
|
15 |
-
"lllyasviel/control_v11p_sd15_canny",
|
16 |
-
"lllyasviel/control_v11f1p_sd15_depth",
|
17 |
-
"lllyasviel/control_v11p_sd15_openpose",
|
18 |
-
"lllyasviel/control_v11p_sd15_scribble",
|
19 |
-
"lllyasviel/control_v11p_sd15_mlsd",
|
20 |
-
"lllyasviel/control_v11e_sd15_shuffle",
|
21 |
-
"lllyasviel/control_v11e_sd15_ip2p",
|
22 |
-
"lllyasviel/control_v11p_sd15_lineart",
|
23 |
-
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
24 |
-
"lllyasviel/control_v11p_sd15_softedge",
|
25 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/utils/preprocces_utils.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
from controlnet_aux import (
|
2 |
-
CannyDetector,
|
3 |
-
ContentShuffleDetector,
|
4 |
-
HEDdetector,
|
5 |
-
LineartAnimeDetector,
|
6 |
-
LineartDetector,
|
7 |
-
MediapipeFaceDetector,
|
8 |
-
MidasDetector,
|
9 |
-
MLSDdetector,
|
10 |
-
NormalBaeDetector,
|
11 |
-
OpenposeDetector,
|
12 |
-
PidiNetDetector,
|
13 |
-
SamDetector,
|
14 |
-
)
|
15 |
-
|
16 |
-
import numpy as np
|
17 |
-
import cv2
|
18 |
-
|
19 |
-
def pad64(x):
|
20 |
-
return int(np.ceil(float(x) / 64.0) * 64 - x)
|
21 |
-
|
22 |
-
def HWC3(x):
|
23 |
-
assert x.dtype == np.uint8
|
24 |
-
if x.ndim == 2:
|
25 |
-
x = x[:, :, None]
|
26 |
-
assert x.ndim == 3
|
27 |
-
H, W, C = x.shape
|
28 |
-
assert C == 1 or C == 3 or C == 4
|
29 |
-
if C == 3:
|
30 |
-
return x
|
31 |
-
if C == 1:
|
32 |
-
return np.concatenate([x, x, x], axis=2)
|
33 |
-
if C == 4:
|
34 |
-
color = x[:, :, 0:3].astype(np.float32)
|
35 |
-
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
36 |
-
y = color * alpha + 255.0 * (1.0 - alpha)
|
37 |
-
y = y.clip(0, 255).astype(np.uint8)
|
38 |
-
return y
|
39 |
-
|
40 |
-
def safer_memory(x):
|
41 |
-
return np.ascontiguousarray(x.copy()).copy()
|
42 |
-
|
43 |
-
|
44 |
-
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
|
45 |
-
if skip_hwc3:
|
46 |
-
img = input_image
|
47 |
-
else:
|
48 |
-
img = HWC3(input_image)
|
49 |
-
|
50 |
-
H_raw, W_raw, _ = img.shape
|
51 |
-
k = float(resolution) / float(min(H_raw, W_raw))
|
52 |
-
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
|
53 |
-
H_target = int(np.round(float(H_raw) * k))
|
54 |
-
W_target = int(np.round(float(W_raw) * k))
|
55 |
-
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
|
56 |
-
H_pad, W_pad = pad64(H_target), pad64(W_target)
|
57 |
-
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
|
58 |
-
|
59 |
-
def remove_pad(x):
|
60 |
-
return safer_memory(x[:H_target, :W_target])
|
61 |
-
|
62 |
-
return safer_memory(img_padded), remove_pad
|
63 |
-
|
64 |
-
|
65 |
-
def scribble_xdog(img, res=512, thr_a=32, **kwargs):
|
66 |
-
img, remove_pad = resize_image_with_pad(img, res)
|
67 |
-
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
|
68 |
-
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
|
69 |
-
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
|
70 |
-
result = np.zeros_like(img, dtype=np.uint8)
|
71 |
-
result[2 * (255 - dog) > thr_a] = 255
|
72 |
-
return remove_pad(result), True
|
73 |
-
|
74 |
-
def none_preprocces(image_path:str):
|
75 |
-
return Image.open(image_path)
|
76 |
-
|
77 |
-
PREPROCCES_DICT = {
|
78 |
-
"Hed": HEDdetector.from_pretrained("lllyasviel/Annotators"),
|
79 |
-
"Midas": MidasDetector.from_pretrained("lllyasviel/Annotators"),
|
80 |
-
"MLSD": MLSDdetector.from_pretrained("lllyasviel/Annotators"),
|
81 |
-
"Openpose": OpenposeDetector.from_pretrained("lllyasviel/Annotators"),
|
82 |
-
"PidiNet": PidiNetDetector.from_pretrained("lllyasviel/Annotators"),
|
83 |
-
"NormalBae": NormalBaeDetector.from_pretrained("lllyasviel/Annotators"),
|
84 |
-
"Lineart": LineartDetector.from_pretrained("lllyasviel/Annotators"),
|
85 |
-
"LineartAnime": LineartAnimeDetector.from_pretrained(
|
86 |
-
"lllyasviel/Annotators"
|
87 |
-
),
|
88 |
-
"Canny": CannyDetector(),
|
89 |
-
"ContentShuffle": ContentShuffleDetector(),
|
90 |
-
"MediapipeFace": MediapipeFaceDetector(),
|
91 |
-
"ScribbleXDOG": scribble_xdog,
|
92 |
-
"None": none_preprocces
|
93 |
-
}
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/utils/scheduler_list.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
from diffusers import (
|
2 |
-
DDIMScheduler,
|
3 |
-
DDPMScheduler,
|
4 |
-
DEISMultistepScheduler,
|
5 |
-
DPMSolverMultistepScheduler,
|
6 |
-
DPMSolverSinglestepScheduler,
|
7 |
-
EulerAncestralDiscreteScheduler,
|
8 |
-
EulerDiscreteScheduler,
|
9 |
-
HeunDiscreteScheduler,
|
10 |
-
KDPM2AncestralDiscreteScheduler,
|
11 |
-
KDPM2DiscreteScheduler,
|
12 |
-
PNDMScheduler,
|
13 |
-
UniPCMultistepScheduler,
|
14 |
-
)
|
15 |
-
|
16 |
-
SCHEDULER_MAPPING = {
|
17 |
-
"DDIM": DDIMScheduler,
|
18 |
-
"DDPMScheduler": DDPMScheduler,
|
19 |
-
"DEISMultistep": DEISMultistepScheduler,
|
20 |
-
"DPMSolverMultistep": DPMSolverMultistepScheduler,
|
21 |
-
"DPMSolverSinglestep": DPMSolverSinglestepScheduler,
|
22 |
-
"EulerAncestralDiscrete": EulerAncestralDiscreteScheduler,
|
23 |
-
"EulerDiscrete": EulerDiscreteScheduler,
|
24 |
-
"HeunDiscrete": HeunDiscreteScheduler,
|
25 |
-
"KDPM2AncestralDiscrete": KDPM2AncestralDiscreteScheduler,
|
26 |
-
"KDPM2Discrete": KDPM2DiscreteScheduler,
|
27 |
-
"PNDMScheduler": PNDMScheduler,
|
28 |
-
"UniPCMultistep": UniPCMultistepScheduler,
|
29 |
-
}
|
30 |
-
|
31 |
-
|
32 |
-
def get_scheduler(pipe, scheduler):
|
33 |
-
if scheduler in SCHEDULER_MAPPING:
|
34 |
-
SchedulerClass = SCHEDULER_MAPPING[scheduler]
|
35 |
-
pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config)
|
36 |
-
else:
|
37 |
-
raise ValueError(f"Invalid scheduler name {scheduler}")
|
38 |
-
|
39 |
-
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|