Spaces:
Paused
Paused
Delete diffusion_webui
Browse files- diffusion_webui/__init__.py +0 -0
- diffusion_webui/controlnet/__init__.py +0 -0
- diffusion_webui/controlnet/controlnet_canny.py +0 -176
- diffusion_webui/controlnet/controlnet_depth.py +0 -176
- diffusion_webui/controlnet/controlnet_hed.py +0 -170
- diffusion_webui/controlnet/controlnet_mlsd.py +0 -153
- diffusion_webui/controlnet/controlnet_pose.py +0 -170
- diffusion_webui/controlnet/controlnet_scribble.py +0 -170
- diffusion_webui/controlnet/controlnet_seg.py +0 -329
- diffusion_webui/controlnet_inpaint/__init__.py +0 -0
- diffusion_webui/controlnet_inpaint/canny_inpaint.py +0 -176
- diffusion_webui/controlnet_inpaint/controlnet_inpaint_app.py +0 -159
- diffusion_webui/controlnet_inpaint/pipeline_stable_diffusion_controlnet_inpaint.py +0 -607
- diffusion_webui/helpers.py +0 -48
- diffusion_webui/stable_diffusion/__init__.py +0 -0
- diffusion_webui/stable_diffusion/img2img_app.py +0 -131
- diffusion_webui/stable_diffusion/inpaint_app.py +0 -105
- diffusion_webui/stable_diffusion/keras_txt2img.py +0 -131
- diffusion_webui/stable_diffusion/text2img_app.py +0 -139
diffusion_webui/__init__.py
DELETED
|
File without changes
|
diffusion_webui/controlnet/__init__.py
DELETED
|
File without changes
|
diffusion_webui/controlnet/controlnet_canny.py
DELETED
|
@@ -1,176 +0,0 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
from diffusers import (
|
| 6 |
-
ControlNetModel,
|
| 7 |
-
StableDiffusionControlNetPipeline,
|
| 8 |
-
UniPCMultistepScheduler,
|
| 9 |
-
)
|
| 10 |
-
from PIL import Image
|
| 11 |
-
|
| 12 |
-
stable_model_list = [
|
| 13 |
-
"runwayml/stable-diffusion-v1-5",
|
| 14 |
-
"stabilityai/stable-diffusion-2-1",
|
| 15 |
-
]
|
| 16 |
-
|
| 17 |
-
controlnet_canny_model_list = [
|
| 18 |
-
"lllyasviel/sd-controlnet-canny",
|
| 19 |
-
"thibaud/controlnet-sd21-canny-diffusers",
|
| 20 |
-
]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 24 |
-
|
| 25 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 26 |
-
|
| 27 |
-
data_list = [
|
| 28 |
-
"data/test.png",
|
| 29 |
-
]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def controlnet_canny(
|
| 33 |
-
image_path: str,
|
| 34 |
-
controlnet_model_path: str,
|
| 35 |
-
):
|
| 36 |
-
image = Image.open(image_path)
|
| 37 |
-
image = np.array(image)
|
| 38 |
-
|
| 39 |
-
image = cv2.Canny(image, 100, 200)
|
| 40 |
-
image = image[:, :, None]
|
| 41 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 42 |
-
image = Image.fromarray(image)
|
| 43 |
-
|
| 44 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
-
controlnet_model_path, torch_dtype=torch.float16
|
| 46 |
-
)
|
| 47 |
-
return controlnet, image
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def stable_diffusion_controlnet_canny(
|
| 51 |
-
image_path: str,
|
| 52 |
-
stable_model_path: str,
|
| 53 |
-
controlnet_model_path: str,
|
| 54 |
-
prompt: str,
|
| 55 |
-
negative_prompt: str,
|
| 56 |
-
guidance_scale: int,
|
| 57 |
-
num_inference_step: int,
|
| 58 |
-
):
|
| 59 |
-
|
| 60 |
-
controlnet, image = controlnet_canny(
|
| 61 |
-
image_path=image_path, controlnet_model_path=controlnet_model_path
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 65 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 66 |
-
controlnet=controlnet,
|
| 67 |
-
safety_checker=None,
|
| 68 |
-
torch_dtype=torch.float16,
|
| 69 |
-
)
|
| 70 |
-
pipe.to("cuda")
|
| 71 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 72 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 73 |
-
|
| 74 |
-
output = pipe(
|
| 75 |
-
prompt=prompt,
|
| 76 |
-
image=image,
|
| 77 |
-
negative_prompt=negative_prompt,
|
| 78 |
-
num_inference_steps=num_inference_step,
|
| 79 |
-
guidance_scale=guidance_scale,
|
| 80 |
-
).images
|
| 81 |
-
|
| 82 |
-
return output[0]
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def stable_diffusion_controlnet_canny_app():
|
| 86 |
-
with gr.Blocks():
|
| 87 |
-
with gr.Row():
|
| 88 |
-
with gr.Column():
|
| 89 |
-
controlnet_canny_image_file = gr.Image(
|
| 90 |
-
type="filepath", label="Image"
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 94 |
-
choices=stable_model_list,
|
| 95 |
-
value=stable_model_list[0],
|
| 96 |
-
label="Stable Model Id",
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
controlnet_canny_model_id = gr.Dropdown(
|
| 100 |
-
choices=controlnet_canny_model_list,
|
| 101 |
-
value=controlnet_canny_model_list[0],
|
| 102 |
-
label="Controlnet Model Id",
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
controlnet_canny_prompt = gr.Textbox(
|
| 106 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
controlnet_canny_negative_prompt = gr.Textbox(
|
| 110 |
-
lines=1,
|
| 111 |
-
value=stable_negative_prompt_list[0],
|
| 112 |
-
label="Negative Prompt",
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
-
controlnet_canny_guidance_scale = gr.Slider(
|
| 117 |
-
minimum=0.1,
|
| 118 |
-
maximum=15,
|
| 119 |
-
step=0.1,
|
| 120 |
-
value=7.5,
|
| 121 |
-
label="Guidance Scale",
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
controlnet_canny_num_inference_step = gr.Slider(
|
| 125 |
-
minimum=1,
|
| 126 |
-
maximum=100,
|
| 127 |
-
step=1,
|
| 128 |
-
value=50,
|
| 129 |
-
label="Num Inference Step",
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
controlnet_canny_predict = gr.Button(value="Generator")
|
| 133 |
-
|
| 134 |
-
with gr.Column():
|
| 135 |
-
output_image = gr.Image(label="Output")
|
| 136 |
-
|
| 137 |
-
gr.Examples(
|
| 138 |
-
fn=stable_diffusion_controlnet_canny,
|
| 139 |
-
examples=[
|
| 140 |
-
[
|
| 141 |
-
data_list[0],
|
| 142 |
-
stable_model_list[0],
|
| 143 |
-
controlnet_canny_model_list[0],
|
| 144 |
-
stable_prompt_list[0],
|
| 145 |
-
stable_negative_prompt_list[0],
|
| 146 |
-
7.5,
|
| 147 |
-
50,
|
| 148 |
-
]
|
| 149 |
-
],
|
| 150 |
-
inputs=[
|
| 151 |
-
controlnet_canny_image_file,
|
| 152 |
-
controlnet_canny_stable_model_id,
|
| 153 |
-
controlnet_canny_model_id,
|
| 154 |
-
controlnet_canny_prompt,
|
| 155 |
-
controlnet_canny_negative_prompt,
|
| 156 |
-
controlnet_canny_guidance_scale,
|
| 157 |
-
controlnet_canny_num_inference_step,
|
| 158 |
-
],
|
| 159 |
-
outputs=[output_image],
|
| 160 |
-
cache_examples=False,
|
| 161 |
-
label="Controlnet Canny Example",
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
controlnet_canny_predict.click(
|
| 165 |
-
fn=stable_diffusion_controlnet_canny,
|
| 166 |
-
inputs=[
|
| 167 |
-
controlnet_canny_image_file,
|
| 168 |
-
controlnet_canny_stable_model_id,
|
| 169 |
-
controlnet_canny_model_id,
|
| 170 |
-
controlnet_canny_prompt,
|
| 171 |
-
controlnet_canny_negative_prompt,
|
| 172 |
-
controlnet_canny_guidance_scale,
|
| 173 |
-
controlnet_canny_num_inference_step,
|
| 174 |
-
],
|
| 175 |
-
outputs=[output_image],
|
| 176 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_depth.py
DELETED
|
@@ -1,176 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from transformers import pipeline
|
| 11 |
-
|
| 12 |
-
stable_model_list = [
|
| 13 |
-
"runwayml/stable-diffusion-v1-5",
|
| 14 |
-
"stabilityai/stable-diffusion-2-1",
|
| 15 |
-
]
|
| 16 |
-
|
| 17 |
-
controlnet_depth_model_list = [
|
| 18 |
-
"lllyasviel/sd-controlnet-depth",
|
| 19 |
-
"thibaud/controlnet-sd21-depth-diffusers",
|
| 20 |
-
]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 24 |
-
|
| 25 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 26 |
-
|
| 27 |
-
data_list = [
|
| 28 |
-
"data/test.png",
|
| 29 |
-
]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def controlnet_depth(image_path: str, depth_model_path: str):
|
| 33 |
-
depth_estimator = pipeline("depth-estimation")
|
| 34 |
-
|
| 35 |
-
image = Image.open(image_path)
|
| 36 |
-
image = depth_estimator(image)["depth"]
|
| 37 |
-
image = np.array(image)
|
| 38 |
-
image = image[:, :, None]
|
| 39 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 40 |
-
image = Image.fromarray(image)
|
| 41 |
-
|
| 42 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 43 |
-
depth_model_path, torch_dtype=torch.float16
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
return controlnet, image
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def stable_diffusion_controlnet_depth(
|
| 50 |
-
image_path: str,
|
| 51 |
-
stable_model_path: str,
|
| 52 |
-
depth_model_path: str,
|
| 53 |
-
prompt: str,
|
| 54 |
-
negative_prompt: str,
|
| 55 |
-
guidance_scale: int,
|
| 56 |
-
num_inference_step: int,
|
| 57 |
-
):
|
| 58 |
-
|
| 59 |
-
controlnet, image = controlnet_depth(
|
| 60 |
-
image_path=image_path, depth_model_path=depth_model_path
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 64 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 65 |
-
controlnet=controlnet,
|
| 66 |
-
safety_checker=None,
|
| 67 |
-
torch_dtype=torch.float16,
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
pipe.to("cuda")
|
| 71 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 72 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 73 |
-
|
| 74 |
-
output = pipe(
|
| 75 |
-
prompt=prompt,
|
| 76 |
-
image=image,
|
| 77 |
-
negative_prompt=negative_prompt,
|
| 78 |
-
num_inference_steps=num_inference_step,
|
| 79 |
-
guidance_scale=guidance_scale,
|
| 80 |
-
).images
|
| 81 |
-
|
| 82 |
-
return output[0]
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def stable_diffusion_controlnet_depth_app():
|
| 86 |
-
with gr.Blocks():
|
| 87 |
-
with gr.Row():
|
| 88 |
-
with gr.Column():
|
| 89 |
-
controlnet_depth_image_file = gr.Image(
|
| 90 |
-
type="filepath", label="Image"
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
controlnet_depth_stable_model_id = gr.Dropdown(
|
| 94 |
-
choices=stable_model_list,
|
| 95 |
-
value=stable_model_list[0],
|
| 96 |
-
label="Stable Model Id",
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
controlnet_depth_model_id = gr.Dropdown(
|
| 100 |
-
choices=controlnet_depth_model_list,
|
| 101 |
-
value=controlnet_depth_model_list[0],
|
| 102 |
-
label="ControlNet Model Id",
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
controlnet_depth_prompt = gr.Textbox(
|
| 106 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
controlnet_depth_negative_prompt = gr.Textbox(
|
| 110 |
-
lines=1,
|
| 111 |
-
value=stable_negative_prompt_list[0],
|
| 112 |
-
label="Negative Prompt",
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
-
controlnet_depth_guidance_scale = gr.Slider(
|
| 117 |
-
minimum=0.1,
|
| 118 |
-
maximum=15,
|
| 119 |
-
step=0.1,
|
| 120 |
-
value=7.5,
|
| 121 |
-
label="Guidance Scale",
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
controlnet_depth_num_inference_step = gr.Slider(
|
| 125 |
-
minimum=1,
|
| 126 |
-
maximum=100,
|
| 127 |
-
step=1,
|
| 128 |
-
value=50,
|
| 129 |
-
label="Num Inference Step",
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
controlnet_depth_predict = gr.Button(value="Generator")
|
| 133 |
-
|
| 134 |
-
with gr.Column():
|
| 135 |
-
output_image = gr.Image(label="Output")
|
| 136 |
-
|
| 137 |
-
gr.Examples(
|
| 138 |
-
fn=stable_diffusion_controlnet_depth,
|
| 139 |
-
examples=[
|
| 140 |
-
[
|
| 141 |
-
data_list[0],
|
| 142 |
-
stable_model_list[0],
|
| 143 |
-
controlnet_depth_model_list[0],
|
| 144 |
-
stable_prompt_list[0],
|
| 145 |
-
stable_negative_prompt_list[0],
|
| 146 |
-
7.5,
|
| 147 |
-
50,
|
| 148 |
-
]
|
| 149 |
-
],
|
| 150 |
-
inputs=[
|
| 151 |
-
controlnet_depth_image_file,
|
| 152 |
-
controlnet_depth_stable_model_id,
|
| 153 |
-
controlnet_depth_model_id,
|
| 154 |
-
controlnet_depth_prompt,
|
| 155 |
-
controlnet_depth_negative_prompt,
|
| 156 |
-
controlnet_depth_guidance_scale,
|
| 157 |
-
controlnet_depth_num_inference_step,
|
| 158 |
-
],
|
| 159 |
-
outputs=[output_image],
|
| 160 |
-
cache_examples=False,
|
| 161 |
-
label="ControlNet Depth Example",
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
controlnet_depth_predict.click(
|
| 165 |
-
fn=stable_diffusion_controlnet_depth,
|
| 166 |
-
inputs=[
|
| 167 |
-
controlnet_depth_image_file,
|
| 168 |
-
controlnet_depth_stable_model_id,
|
| 169 |
-
controlnet_depth_model_id,
|
| 170 |
-
controlnet_depth_prompt,
|
| 171 |
-
controlnet_depth_negative_prompt,
|
| 172 |
-
controlnet_depth_guidance_scale,
|
| 173 |
-
controlnet_depth_num_inference_step,
|
| 174 |
-
],
|
| 175 |
-
outputs=output_image,
|
| 176 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_hed.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from controlnet_aux import HEDdetector
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
stable_model_list = [
|
| 12 |
-
"runwayml/stable-diffusion-v1-5",
|
| 13 |
-
"stabilityai/stable-diffusion-2-1",
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
controlnet_hed_model_list = [
|
| 17 |
-
"lllyasviel/sd-controlnet-hed",
|
| 18 |
-
"thibaud/controlnet-sd21-hed-diffusers",
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 22 |
-
|
| 23 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 24 |
-
|
| 25 |
-
data_list = [
|
| 26 |
-
"data/test.png",
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def controlnet_hed(image_path: str, controlnet_hed_model_path: str):
|
| 31 |
-
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
-
|
| 33 |
-
image = Image.open(image_path)
|
| 34 |
-
image = hed(image)
|
| 35 |
-
|
| 36 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
-
controlnet_hed_model_path, torch_dtype=torch.float16
|
| 38 |
-
)
|
| 39 |
-
return controlnet, image
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def stable_diffusion_controlnet_hed(
|
| 43 |
-
image_path: str,
|
| 44 |
-
stable_model_path: str,
|
| 45 |
-
controlnet_hed_model_path: str,
|
| 46 |
-
prompt: str,
|
| 47 |
-
negative_prompt: str,
|
| 48 |
-
guidance_scale: int,
|
| 49 |
-
num_inference_step: int,
|
| 50 |
-
):
|
| 51 |
-
|
| 52 |
-
controlnet, image = controlnet_hed(
|
| 53 |
-
image_path=image_path,
|
| 54 |
-
controlnet_hed_model_path=controlnet_hed_model_path,
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 58 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 59 |
-
controlnet=controlnet,
|
| 60 |
-
safety_checker=None,
|
| 61 |
-
torch_dtype=torch.float16,
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
pipe.to("cuda")
|
| 65 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 66 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 67 |
-
|
| 68 |
-
output = pipe(
|
| 69 |
-
prompt=prompt,
|
| 70 |
-
image=image,
|
| 71 |
-
negative_prompt=negative_prompt,
|
| 72 |
-
num_inference_steps=num_inference_step,
|
| 73 |
-
guidance_scale=guidance_scale,
|
| 74 |
-
).images
|
| 75 |
-
|
| 76 |
-
return output[0]
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def stable_diffusion_controlnet_hed_app():
|
| 80 |
-
with gr.Blocks():
|
| 81 |
-
with gr.Row():
|
| 82 |
-
with gr.Column():
|
| 83 |
-
controlnet_hed_image_file = gr.Image(
|
| 84 |
-
type="filepath", label="Image"
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
controlnet_hed_stable_model_id = gr.Dropdown(
|
| 88 |
-
choices=stable_model_list,
|
| 89 |
-
value=stable_model_list[0],
|
| 90 |
-
label="Stable Model Id",
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
controlnet_hed_model_id = gr.Dropdown(
|
| 94 |
-
choices=controlnet_hed_model_list,
|
| 95 |
-
value=controlnet_hed_model_list[0],
|
| 96 |
-
label="ControlNet Model Id",
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
controlnet_hed_prompt = gr.Textbox(
|
| 100 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
controlnet_hed_negative_prompt = gr.Textbox(
|
| 104 |
-
lines=1,
|
| 105 |
-
value=stable_negative_prompt_list[0],
|
| 106 |
-
label="Negative Prompt",
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 110 |
-
controlnet_hed_guidance_scale = gr.Slider(
|
| 111 |
-
minimum=0.1,
|
| 112 |
-
maximum=15,
|
| 113 |
-
step=0.1,
|
| 114 |
-
value=7.5,
|
| 115 |
-
label="Guidance Scale",
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
controlnet_hed_num_inference_step = gr.Slider(
|
| 119 |
-
minimum=1,
|
| 120 |
-
maximum=100,
|
| 121 |
-
step=1,
|
| 122 |
-
value=50,
|
| 123 |
-
label="Num Inference Step",
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
controlnet_hed_predict = gr.Button(value="Generator")
|
| 127 |
-
|
| 128 |
-
with gr.Column():
|
| 129 |
-
output_image = gr.Image(label="Output")
|
| 130 |
-
|
| 131 |
-
gr.Examples(
|
| 132 |
-
fn=stable_diffusion_controlnet_hed,
|
| 133 |
-
examples=[
|
| 134 |
-
[
|
| 135 |
-
data_list[0],
|
| 136 |
-
stable_model_list[0],
|
| 137 |
-
controlnet_hed_model_list[0],
|
| 138 |
-
stable_prompt_list[0],
|
| 139 |
-
stable_negative_prompt_list[0],
|
| 140 |
-
7.5,
|
| 141 |
-
50,
|
| 142 |
-
]
|
| 143 |
-
],
|
| 144 |
-
inputs=[
|
| 145 |
-
controlnet_hed_image_file,
|
| 146 |
-
controlnet_hed_stable_model_id,
|
| 147 |
-
controlnet_hed_model_id,
|
| 148 |
-
controlnet_hed_prompt,
|
| 149 |
-
controlnet_hed_negative_prompt,
|
| 150 |
-
controlnet_hed_guidance_scale,
|
| 151 |
-
controlnet_hed_num_inference_step,
|
| 152 |
-
],
|
| 153 |
-
outputs=[output_image],
|
| 154 |
-
cache_examples=False,
|
| 155 |
-
label="ControlNet HED Example",
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
controlnet_hed_predict.click(
|
| 159 |
-
fn=stable_diffusion_controlnet_hed,
|
| 160 |
-
inputs=[
|
| 161 |
-
controlnet_hed_image_file,
|
| 162 |
-
controlnet_hed_stable_model_id,
|
| 163 |
-
controlnet_hed_model_id,
|
| 164 |
-
controlnet_hed_prompt,
|
| 165 |
-
controlnet_hed_negative_prompt,
|
| 166 |
-
controlnet_hed_guidance_scale,
|
| 167 |
-
controlnet_hed_num_inference_step,
|
| 168 |
-
],
|
| 169 |
-
outputs=[output_image],
|
| 170 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_mlsd.py
DELETED
|
@@ -1,153 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from controlnet_aux import MLSDdetector
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
stable_model_list = [
|
| 12 |
-
"runwayml/stable-diffusion-v1-5",
|
| 13 |
-
]
|
| 14 |
-
|
| 15 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 16 |
-
|
| 17 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 18 |
-
|
| 19 |
-
data_list = [
|
| 20 |
-
"data/test.png",
|
| 21 |
-
]
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def controlnet_mlsd(image_path: str):
|
| 25 |
-
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 26 |
-
|
| 27 |
-
image = Image.open(image_path)
|
| 28 |
-
image = mlsd(image)
|
| 29 |
-
|
| 30 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 31 |
-
"lllyasviel/sd-controlnet-mlsd",
|
| 32 |
-
torch_dtype=torch.float16,
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
return controlnet, image
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def stable_diffusion_controlnet_mlsd(
|
| 39 |
-
image_path: str,
|
| 40 |
-
model_path: str,
|
| 41 |
-
prompt: str,
|
| 42 |
-
negative_prompt: str,
|
| 43 |
-
guidance_scale: int,
|
| 44 |
-
num_inference_step: int,
|
| 45 |
-
):
|
| 46 |
-
|
| 47 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 48 |
-
|
| 49 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 50 |
-
pretrained_model_name_or_path=model_path,
|
| 51 |
-
controlnet=controlnet,
|
| 52 |
-
safety_checker=None,
|
| 53 |
-
torch_dtype=torch.float16,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
pipe.to("cuda")
|
| 57 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 58 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 59 |
-
|
| 60 |
-
output = pipe(
|
| 61 |
-
prompt=prompt,
|
| 62 |
-
image=image,
|
| 63 |
-
negative_prompt=negative_prompt,
|
| 64 |
-
num_inference_steps=num_inference_step,
|
| 65 |
-
guidance_scale=guidance_scale,
|
| 66 |
-
).images
|
| 67 |
-
|
| 68 |
-
return output[0]
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def stable_diffusion_controlnet_mlsd_app():
|
| 72 |
-
with gr.Blocks():
|
| 73 |
-
with gr.Row():
|
| 74 |
-
with gr.Column():
|
| 75 |
-
controlnet_mlsd_image_file = gr.Image(
|
| 76 |
-
type="filepath", label="Image"
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
controlnet_mlsd_model_id = gr.Dropdown(
|
| 80 |
-
choices=stable_model_list,
|
| 81 |
-
value=stable_model_list[0],
|
| 82 |
-
label="Stable Model Id",
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
controlnet_mlsd_prompt = gr.Textbox(
|
| 86 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
controlnet_mlsd_negative_prompt = gr.Textbox(
|
| 90 |
-
lines=1,
|
| 91 |
-
value=stable_negative_prompt_list[0],
|
| 92 |
-
label="Negative Prompt",
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 96 |
-
controlnet_mlsd_guidance_scale = gr.Slider(
|
| 97 |
-
minimum=0.1,
|
| 98 |
-
maximum=15,
|
| 99 |
-
step=0.1,
|
| 100 |
-
value=7.5,
|
| 101 |
-
label="Guidance Scale",
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
controlnet_mlsd_num_inference_step = gr.Slider(
|
| 105 |
-
minimum=1,
|
| 106 |
-
maximum=100,
|
| 107 |
-
step=1,
|
| 108 |
-
value=50,
|
| 109 |
-
label="Num Inference Step",
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
controlnet_mlsd_predict = gr.Button(value="Generator")
|
| 113 |
-
|
| 114 |
-
with gr.Column():
|
| 115 |
-
output_image = gr.Image(label="Output")
|
| 116 |
-
|
| 117 |
-
gr.Examples(
|
| 118 |
-
fn=stable_diffusion_controlnet_mlsd,
|
| 119 |
-
examples=[
|
| 120 |
-
[
|
| 121 |
-
data_list[0],
|
| 122 |
-
stable_model_list[0],
|
| 123 |
-
stable_prompt_list[0],
|
| 124 |
-
stable_negative_prompt_list[0],
|
| 125 |
-
7.5,
|
| 126 |
-
50,
|
| 127 |
-
]
|
| 128 |
-
],
|
| 129 |
-
inputs=[
|
| 130 |
-
controlnet_mlsd_image_file,
|
| 131 |
-
controlnet_mlsd_model_id,
|
| 132 |
-
controlnet_mlsd_prompt,
|
| 133 |
-
controlnet_mlsd_negative_prompt,
|
| 134 |
-
controlnet_mlsd_guidance_scale,
|
| 135 |
-
controlnet_mlsd_num_inference_step,
|
| 136 |
-
],
|
| 137 |
-
outputs=[output_image],
|
| 138 |
-
label="ControlNet-MLSD Example",
|
| 139 |
-
cache_examples=False,
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
controlnet_mlsd_predict.click(
|
| 143 |
-
fn=stable_diffusion_controlnet_mlsd,
|
| 144 |
-
inputs=[
|
| 145 |
-
controlnet_mlsd_image_file,
|
| 146 |
-
controlnet_mlsd_model_id,
|
| 147 |
-
controlnet_mlsd_prompt,
|
| 148 |
-
controlnet_mlsd_negative_prompt,
|
| 149 |
-
controlnet_mlsd_guidance_scale,
|
| 150 |
-
controlnet_mlsd_num_inference_step,
|
| 151 |
-
],
|
| 152 |
-
outputs=output_image,
|
| 153 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_pose.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from controlnet_aux import OpenposeDetector
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
stable_model_list = [
|
| 12 |
-
"runwayml/stable-diffusion-v1-5",
|
| 13 |
-
"stabilityai/stable-diffusion-2-1",
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
controlnet_pose_model_list = [
|
| 17 |
-
"lllyasviel/sd-controlnet-openpose",
|
| 18 |
-
"thibaud/controlnet-sd21-openpose-diffusers",
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 22 |
-
|
| 23 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 24 |
-
|
| 25 |
-
data_list = [
|
| 26 |
-
"data/test.png",
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def controlnet_pose(image_path: str, controlnet_pose_model_path: str):
|
| 31 |
-
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
-
|
| 33 |
-
image = Image.open(image_path)
|
| 34 |
-
image = openpose(image)
|
| 35 |
-
|
| 36 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
-
controlnet_pose_model_path, torch_dtype=torch.float16
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
return controlnet, image
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def stable_diffusion_controlnet_pose(
|
| 44 |
-
image_path: str,
|
| 45 |
-
stable_model_path: str,
|
| 46 |
-
controlnet_pose_model_path: str,
|
| 47 |
-
prompt: str,
|
| 48 |
-
negative_prompt: str,
|
| 49 |
-
guidance_scale: int,
|
| 50 |
-
num_inference_step: int,
|
| 51 |
-
):
|
| 52 |
-
|
| 53 |
-
controlnet, image = controlnet_pose(
|
| 54 |
-
image_path=image_path,
|
| 55 |
-
controlnet_pose_model_path=controlnet_pose_model_path,
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 59 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 60 |
-
controlnet=controlnet,
|
| 61 |
-
safety_checker=None,
|
| 62 |
-
torch_dtype=torch.float16,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
pipe.to("cuda")
|
| 66 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 67 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
-
|
| 69 |
-
output = pipe(
|
| 70 |
-
prompt=prompt,
|
| 71 |
-
image=image,
|
| 72 |
-
negative_prompt=negative_prompt,
|
| 73 |
-
num_inference_steps=num_inference_step,
|
| 74 |
-
guidance_scale=guidance_scale,
|
| 75 |
-
).images
|
| 76 |
-
|
| 77 |
-
return output[0]
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def stable_diffusion_controlnet_pose_app():
|
| 81 |
-
with gr.Blocks():
|
| 82 |
-
with gr.Row():
|
| 83 |
-
with gr.Column():
|
| 84 |
-
controlnet_pose_image_file = gr.Image(
|
| 85 |
-
type="filepath", label="Image"
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
controlnet_pose_stable_model_id = gr.Dropdown(
|
| 89 |
-
choices=stable_model_list,
|
| 90 |
-
value=stable_model_list[0],
|
| 91 |
-
label="Stable Model Id",
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
controlnet_pose_model_id = gr.Dropdown(
|
| 95 |
-
choices=controlnet_pose_model_list,
|
| 96 |
-
value=controlnet_pose_model_list[0],
|
| 97 |
-
label="ControlNet Model Id",
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
controlnet_pose_prompt = gr.Textbox(
|
| 101 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
controlnet_pose_negative_prompt = gr.Textbox(
|
| 105 |
-
lines=1,
|
| 106 |
-
value=stable_negative_prompt_list[0],
|
| 107 |
-
label="Negative Prompt",
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 111 |
-
controlnet_pose_guidance_scale = gr.Slider(
|
| 112 |
-
minimum=0.1,
|
| 113 |
-
maximum=15,
|
| 114 |
-
step=0.1,
|
| 115 |
-
value=7.5,
|
| 116 |
-
label="Guidance Scale",
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
controlnet_pose_num_inference_step = gr.Slider(
|
| 120 |
-
minimum=1,
|
| 121 |
-
maximum=100,
|
| 122 |
-
step=1,
|
| 123 |
-
value=50,
|
| 124 |
-
label="Num Inference Step",
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
controlnet_pose_predict = gr.Button(value="Generator")
|
| 128 |
-
|
| 129 |
-
with gr.Column():
|
| 130 |
-
output_image = gr.Image(label="Output")
|
| 131 |
-
|
| 132 |
-
gr.Examples(
|
| 133 |
-
fn=stable_diffusion_controlnet_pose,
|
| 134 |
-
examples=[
|
| 135 |
-
[
|
| 136 |
-
data_list[0],
|
| 137 |
-
stable_model_list[0],
|
| 138 |
-
controlnet_pose_model_list[0],
|
| 139 |
-
stable_prompt_list[0],
|
| 140 |
-
stable_negative_prompt_list[0],
|
| 141 |
-
7.5,
|
| 142 |
-
50,
|
| 143 |
-
]
|
| 144 |
-
],
|
| 145 |
-
inputs=[
|
| 146 |
-
controlnet_pose_image_file,
|
| 147 |
-
controlnet_pose_stable_model_id,
|
| 148 |
-
controlnet_pose_model_id,
|
| 149 |
-
controlnet_pose_prompt,
|
| 150 |
-
controlnet_pose_negative_prompt,
|
| 151 |
-
controlnet_pose_guidance_scale,
|
| 152 |
-
controlnet_pose_num_inference_step,
|
| 153 |
-
],
|
| 154 |
-
outputs=[output_image],
|
| 155 |
-
label="ControlNet Pose Example",
|
| 156 |
-
cache_examples=False,
|
| 157 |
-
)
|
| 158 |
-
controlnet_pose_predict.click(
|
| 159 |
-
fn=stable_diffusion_controlnet_pose,
|
| 160 |
-
inputs=[
|
| 161 |
-
controlnet_pose_image_file,
|
| 162 |
-
controlnet_pose_stable_model_id,
|
| 163 |
-
controlnet_pose_model_id,
|
| 164 |
-
controlnet_pose_prompt,
|
| 165 |
-
controlnet_pose_negative_prompt,
|
| 166 |
-
controlnet_pose_guidance_scale,
|
| 167 |
-
controlnet_pose_num_inference_step,
|
| 168 |
-
],
|
| 169 |
-
outputs=output_image,
|
| 170 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_scribble.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from controlnet_aux import HEDdetector
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
stable_model_list = [
|
| 12 |
-
"runwayml/stable-diffusion-v1-5",
|
| 13 |
-
"stabilityai/stable-diffusion-2-1",
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
controlnet_hed_model_list = [
|
| 17 |
-
"lllyasviel/sd-controlnet-scribble",
|
| 18 |
-
"thibaud/controlnet-sd21-scribble-diffusers",
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 22 |
-
|
| 23 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 24 |
-
|
| 25 |
-
data_list = [
|
| 26 |
-
"data/test.png",
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def controlnet_scribble(image_path: str, controlnet_hed_model_path: str):
|
| 31 |
-
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
-
|
| 33 |
-
image = Image.open(image_path)
|
| 34 |
-
image = hed(image, scribble=True)
|
| 35 |
-
|
| 36 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
-
controlnet_hed_model_path, torch_dtype=torch.float16
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
-
return controlnet, image
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def stable_diffusion_controlnet_scribble(
|
| 44 |
-
image_path: str,
|
| 45 |
-
stable_model_path: str,
|
| 46 |
-
controlnet_hed_model_path: str,
|
| 47 |
-
prompt: str,
|
| 48 |
-
negative_prompt: str,
|
| 49 |
-
guidance_scale: int,
|
| 50 |
-
num_inference_step: int,
|
| 51 |
-
):
|
| 52 |
-
|
| 53 |
-
controlnet, image = controlnet_scribble(
|
| 54 |
-
image_path=image_path,
|
| 55 |
-
controlnet_hed_model_path=controlnet_hed_model_path,
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 59 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 60 |
-
controlnet=controlnet,
|
| 61 |
-
safety_checker=None,
|
| 62 |
-
torch_dtype=torch.float16,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
pipe.to("cuda")
|
| 66 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 67 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
-
|
| 69 |
-
output = pipe(
|
| 70 |
-
prompt=prompt,
|
| 71 |
-
image=image,
|
| 72 |
-
negative_prompt=negative_prompt,
|
| 73 |
-
num_inference_steps=num_inference_step,
|
| 74 |
-
guidance_scale=guidance_scale,
|
| 75 |
-
).images
|
| 76 |
-
|
| 77 |
-
return output[0]
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def stable_diffusion_controlnet_scribble_app():
|
| 81 |
-
with gr.Blocks():
|
| 82 |
-
with gr.Row():
|
| 83 |
-
with gr.Column():
|
| 84 |
-
controlnet_scribble_image_file = gr.Image(
|
| 85 |
-
type="filepath", label="Image"
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
controlnet_scribble_stable_model_id = gr.Dropdown(
|
| 89 |
-
choices=stable_model_list,
|
| 90 |
-
value=stable_model_list[0],
|
| 91 |
-
label="Stable v1.5 Model Id",
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
controlnet_scribble_model_id = gr.Dropdown(
|
| 95 |
-
choices=controlnet_hed_model_list,
|
| 96 |
-
value=controlnet_hed_model_list[0],
|
| 97 |
-
label="ControlNet Model Id",
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
controlnet_scribble_prompt = gr.Textbox(
|
| 101 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
controlnet_scribble_negative_prompt = gr.Textbox(
|
| 105 |
-
lines=1,
|
| 106 |
-
value=stable_negative_prompt_list[0],
|
| 107 |
-
label="Negative Prompt",
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 111 |
-
controlnet_scribble_guidance_scale = gr.Slider(
|
| 112 |
-
minimum=0.1,
|
| 113 |
-
maximum=15,
|
| 114 |
-
step=0.1,
|
| 115 |
-
value=7.5,
|
| 116 |
-
label="Guidance Scale",
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
controlnet_scribble_num_inference_step = gr.Slider(
|
| 120 |
-
minimum=1,
|
| 121 |
-
maximum=100,
|
| 122 |
-
step=1,
|
| 123 |
-
value=50,
|
| 124 |
-
label="Num Inference Step",
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
controlnet_scribble_predict = gr.Button(value="Generator")
|
| 128 |
-
|
| 129 |
-
with gr.Column():
|
| 130 |
-
output_image = gr.Image(label="Output")
|
| 131 |
-
|
| 132 |
-
gr.Examples(
|
| 133 |
-
fn=stable_diffusion_controlnet_scribble,
|
| 134 |
-
examples=[
|
| 135 |
-
[
|
| 136 |
-
data_list[0],
|
| 137 |
-
stable_model_list[0],
|
| 138 |
-
controlnet_hed_model_list[0],
|
| 139 |
-
stable_prompt_list[0],
|
| 140 |
-
stable_negative_prompt_list[0],
|
| 141 |
-
7.5,
|
| 142 |
-
50,
|
| 143 |
-
],
|
| 144 |
-
],
|
| 145 |
-
inputs=[
|
| 146 |
-
controlnet_scribble_image_file,
|
| 147 |
-
controlnet_scribble_stable_model_id,
|
| 148 |
-
controlnet_scribble_model_id,
|
| 149 |
-
controlnet_scribble_prompt,
|
| 150 |
-
controlnet_scribble_negative_prompt,
|
| 151 |
-
controlnet_scribble_guidance_scale,
|
| 152 |
-
controlnet_scribble_num_inference_step,
|
| 153 |
-
],
|
| 154 |
-
outputs=[output_image],
|
| 155 |
-
label="ControlNet Scribble Example",
|
| 156 |
-
cache_examples=False,
|
| 157 |
-
)
|
| 158 |
-
controlnet_scribble_predict.click(
|
| 159 |
-
fn=stable_diffusion_controlnet_scribble,
|
| 160 |
-
inputs=[
|
| 161 |
-
controlnet_scribble_image_file,
|
| 162 |
-
controlnet_scribble_stable_model_id,
|
| 163 |
-
controlnet_scribble_model_id,
|
| 164 |
-
controlnet_scribble_prompt,
|
| 165 |
-
controlnet_scribble_negative_prompt,
|
| 166 |
-
controlnet_scribble_guidance_scale,
|
| 167 |
-
controlnet_scribble_num_inference_step,
|
| 168 |
-
],
|
| 169 |
-
outputs=output_image,
|
| 170 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet/controlnet_seg.py
DELETED
|
@@ -1,329 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
from diffusers import (
|
| 5 |
-
ControlNetModel,
|
| 6 |
-
StableDiffusionControlNetPipeline,
|
| 7 |
-
UniPCMultistepScheduler,
|
| 8 |
-
)
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 11 |
-
|
| 12 |
-
stable_model_list = [
|
| 13 |
-
"runwayml/stable-diffusion-v1-5",
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 17 |
-
|
| 18 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 19 |
-
|
| 20 |
-
data_list = [
|
| 21 |
-
"data/test.png",
|
| 22 |
-
]
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def ade_palette():
|
| 26 |
-
"""ADE20K palette that maps each class to RGB values."""
|
| 27 |
-
return [
|
| 28 |
-
[120, 120, 120],
|
| 29 |
-
[180, 120, 120],
|
| 30 |
-
[6, 230, 230],
|
| 31 |
-
[80, 50, 50],
|
| 32 |
-
[4, 200, 3],
|
| 33 |
-
[120, 120, 80],
|
| 34 |
-
[140, 140, 140],
|
| 35 |
-
[204, 5, 255],
|
| 36 |
-
[230, 230, 230],
|
| 37 |
-
[4, 250, 7],
|
| 38 |
-
[224, 5, 255],
|
| 39 |
-
[235, 255, 7],
|
| 40 |
-
[150, 5, 61],
|
| 41 |
-
[120, 120, 70],
|
| 42 |
-
[8, 255, 51],
|
| 43 |
-
[255, 6, 82],
|
| 44 |
-
[143, 255, 140],
|
| 45 |
-
[204, 255, 4],
|
| 46 |
-
[255, 51, 7],
|
| 47 |
-
[204, 70, 3],
|
| 48 |
-
[0, 102, 200],
|
| 49 |
-
[61, 230, 250],
|
| 50 |
-
[255, 6, 51],
|
| 51 |
-
[11, 102, 255],
|
| 52 |
-
[255, 7, 71],
|
| 53 |
-
[255, 9, 224],
|
| 54 |
-
[9, 7, 230],
|
| 55 |
-
[220, 220, 220],
|
| 56 |
-
[255, 9, 92],
|
| 57 |
-
[112, 9, 255],
|
| 58 |
-
[8, 255, 214],
|
| 59 |
-
[7, 255, 224],
|
| 60 |
-
[255, 184, 6],
|
| 61 |
-
[10, 255, 71],
|
| 62 |
-
[255, 41, 10],
|
| 63 |
-
[7, 255, 255],
|
| 64 |
-
[224, 255, 8],
|
| 65 |
-
[102, 8, 255],
|
| 66 |
-
[255, 61, 6],
|
| 67 |
-
[255, 194, 7],
|
| 68 |
-
[255, 122, 8],
|
| 69 |
-
[0, 255, 20],
|
| 70 |
-
[255, 8, 41],
|
| 71 |
-
[255, 5, 153],
|
| 72 |
-
[6, 51, 255],
|
| 73 |
-
[235, 12, 255],
|
| 74 |
-
[160, 150, 20],
|
| 75 |
-
[0, 163, 255],
|
| 76 |
-
[140, 140, 140],
|
| 77 |
-
[250, 10, 15],
|
| 78 |
-
[20, 255, 0],
|
| 79 |
-
[31, 255, 0],
|
| 80 |
-
[255, 31, 0],
|
| 81 |
-
[255, 224, 0],
|
| 82 |
-
[153, 255, 0],
|
| 83 |
-
[0, 0, 255],
|
| 84 |
-
[255, 71, 0],
|
| 85 |
-
[0, 235, 255],
|
| 86 |
-
[0, 173, 255],
|
| 87 |
-
[31, 0, 255],
|
| 88 |
-
[11, 200, 200],
|
| 89 |
-
[255, 82, 0],
|
| 90 |
-
[0, 255, 245],
|
| 91 |
-
[0, 61, 255],
|
| 92 |
-
[0, 255, 112],
|
| 93 |
-
[0, 255, 133],
|
| 94 |
-
[255, 0, 0],
|
| 95 |
-
[255, 163, 0],
|
| 96 |
-
[255, 102, 0],
|
| 97 |
-
[194, 255, 0],
|
| 98 |
-
[0, 143, 255],
|
| 99 |
-
[51, 255, 0],
|
| 100 |
-
[0, 82, 255],
|
| 101 |
-
[0, 255, 41],
|
| 102 |
-
[0, 255, 173],
|
| 103 |
-
[10, 0, 255],
|
| 104 |
-
[173, 255, 0],
|
| 105 |
-
[0, 255, 153],
|
| 106 |
-
[255, 92, 0],
|
| 107 |
-
[255, 0, 255],
|
| 108 |
-
[255, 0, 245],
|
| 109 |
-
[255, 0, 102],
|
| 110 |
-
[255, 173, 0],
|
| 111 |
-
[255, 0, 20],
|
| 112 |
-
[255, 184, 184],
|
| 113 |
-
[0, 31, 255],
|
| 114 |
-
[0, 255, 61],
|
| 115 |
-
[0, 71, 255],
|
| 116 |
-
[255, 0, 204],
|
| 117 |
-
[0, 255, 194],
|
| 118 |
-
[0, 255, 82],
|
| 119 |
-
[0, 10, 255],
|
| 120 |
-
[0, 112, 255],
|
| 121 |
-
[51, 0, 255],
|
| 122 |
-
[0, 194, 255],
|
| 123 |
-
[0, 122, 255],
|
| 124 |
-
[0, 255, 163],
|
| 125 |
-
[255, 153, 0],
|
| 126 |
-
[0, 255, 10],
|
| 127 |
-
[255, 112, 0],
|
| 128 |
-
[143, 255, 0],
|
| 129 |
-
[82, 0, 255],
|
| 130 |
-
[163, 255, 0],
|
| 131 |
-
[255, 235, 0],
|
| 132 |
-
[8, 184, 170],
|
| 133 |
-
[133, 0, 255],
|
| 134 |
-
[0, 255, 92],
|
| 135 |
-
[184, 0, 255],
|
| 136 |
-
[255, 0, 31],
|
| 137 |
-
[0, 184, 255],
|
| 138 |
-
[0, 214, 255],
|
| 139 |
-
[255, 0, 112],
|
| 140 |
-
[92, 255, 0],
|
| 141 |
-
[0, 224, 255],
|
| 142 |
-
[112, 224, 255],
|
| 143 |
-
[70, 184, 160],
|
| 144 |
-
[163, 0, 255],
|
| 145 |
-
[153, 0, 255],
|
| 146 |
-
[71, 255, 0],
|
| 147 |
-
[255, 0, 163],
|
| 148 |
-
[255, 204, 0],
|
| 149 |
-
[255, 0, 143],
|
| 150 |
-
[0, 255, 235],
|
| 151 |
-
[133, 255, 0],
|
| 152 |
-
[255, 0, 235],
|
| 153 |
-
[245, 0, 255],
|
| 154 |
-
[255, 0, 122],
|
| 155 |
-
[255, 245, 0],
|
| 156 |
-
[10, 190, 212],
|
| 157 |
-
[214, 255, 0],
|
| 158 |
-
[0, 204, 255],
|
| 159 |
-
[20, 0, 255],
|
| 160 |
-
[255, 255, 0],
|
| 161 |
-
[0, 153, 255],
|
| 162 |
-
[0, 41, 255],
|
| 163 |
-
[0, 255, 204],
|
| 164 |
-
[41, 0, 255],
|
| 165 |
-
[41, 255, 0],
|
| 166 |
-
[173, 0, 255],
|
| 167 |
-
[0, 245, 255],
|
| 168 |
-
[71, 0, 255],
|
| 169 |
-
[122, 0, 255],
|
| 170 |
-
[0, 255, 184],
|
| 171 |
-
[0, 92, 255],
|
| 172 |
-
[184, 255, 0],
|
| 173 |
-
[0, 133, 255],
|
| 174 |
-
[255, 214, 0],
|
| 175 |
-
[25, 194, 194],
|
| 176 |
-
[102, 255, 0],
|
| 177 |
-
[92, 0, 255],
|
| 178 |
-
]
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
def controlnet_mlsd(image_path: str):
|
| 182 |
-
image_processor = AutoImageProcessor.from_pretrained(
|
| 183 |
-
"openmmlab/upernet-convnext-small"
|
| 184 |
-
)
|
| 185 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
| 186 |
-
"openmmlab/upernet-convnext-small"
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
image = Image.open(image_path).convert("RGB")
|
| 190 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 191 |
-
|
| 192 |
-
with torch.no_grad():
|
| 193 |
-
outputs = image_segmentor(pixel_values)
|
| 194 |
-
|
| 195 |
-
seg = image_processor.post_process_semantic_segmentation(
|
| 196 |
-
outputs, target_sizes=[image.size[::-1]]
|
| 197 |
-
)[0]
|
| 198 |
-
|
| 199 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 200 |
-
palette = np.array(ade_palette())
|
| 201 |
-
|
| 202 |
-
for label, color in enumerate(palette):
|
| 203 |
-
color_seg[seg == label, :] = color
|
| 204 |
-
|
| 205 |
-
color_seg = color_seg.astype(np.uint8)
|
| 206 |
-
image = Image.fromarray(color_seg)
|
| 207 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 208 |
-
"lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
return controlnet, image
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
def stable_diffusion_controlnet_seg(
|
| 215 |
-
image_path: str,
|
| 216 |
-
model_path: str,
|
| 217 |
-
prompt: str,
|
| 218 |
-
negative_prompt: str,
|
| 219 |
-
guidance_scale: int,
|
| 220 |
-
num_inference_step: int,
|
| 221 |
-
):
|
| 222 |
-
|
| 223 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 224 |
-
|
| 225 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 226 |
-
pretrained_model_name_or_path=model_path,
|
| 227 |
-
controlnet=controlnet,
|
| 228 |
-
safety_checker=None,
|
| 229 |
-
torch_dtype=torch.float16,
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
pipe.to("cuda")
|
| 233 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 234 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 235 |
-
|
| 236 |
-
output = pipe(
|
| 237 |
-
prompt=prompt,
|
| 238 |
-
image=image,
|
| 239 |
-
negative_prompt=negative_prompt,
|
| 240 |
-
num_inference_steps=num_inference_step,
|
| 241 |
-
guidance_scale=guidance_scale,
|
| 242 |
-
).images
|
| 243 |
-
|
| 244 |
-
return output[0]
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def stable_diffusion_controlnet_seg_app():
|
| 248 |
-
with gr.Blocks():
|
| 249 |
-
with gr.Row():
|
| 250 |
-
with gr.Column():
|
| 251 |
-
controlnet_seg_image_file = gr.Image(
|
| 252 |
-
type="filepath", label="Image"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
controlnet_seg_model_id = gr.Dropdown(
|
| 256 |
-
choices=stable_model_list,
|
| 257 |
-
value=stable_model_list[0],
|
| 258 |
-
label="Stable Model Id",
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
controlnet_seg_prompt = gr.Textbox(
|
| 262 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
controlnet_seg_negative_prompt = gr.Textbox(
|
| 266 |
-
lines=1,
|
| 267 |
-
value=stable_negative_prompt_list[0],
|
| 268 |
-
label="Negative Prompt",
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 272 |
-
controlnet_seg_guidance_scale = gr.Slider(
|
| 273 |
-
minimum=0.1,
|
| 274 |
-
maximum=15,
|
| 275 |
-
step=0.1,
|
| 276 |
-
value=7.5,
|
| 277 |
-
label="Guidance Scale",
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
controlnet_seg_num_inference_step = gr.Slider(
|
| 281 |
-
minimum=1,
|
| 282 |
-
maximum=100,
|
| 283 |
-
step=1,
|
| 284 |
-
value=50,
|
| 285 |
-
label="Num Inference Step",
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
controlnet_seg_predict = gr.Button(value="Generator")
|
| 289 |
-
|
| 290 |
-
with gr.Column():
|
| 291 |
-
output_image = gr.Image(label="Output")
|
| 292 |
-
|
| 293 |
-
gr.Examples(
|
| 294 |
-
fn=stable_diffusion_controlnet_seg,
|
| 295 |
-
examples=[
|
| 296 |
-
[
|
| 297 |
-
data_list[0],
|
| 298 |
-
stable_model_list[0],
|
| 299 |
-
stable_prompt_list[0],
|
| 300 |
-
stable_negative_prompt_list[0],
|
| 301 |
-
7.5,
|
| 302 |
-
50,
|
| 303 |
-
],
|
| 304 |
-
],
|
| 305 |
-
inputs=[
|
| 306 |
-
controlnet_seg_image_file,
|
| 307 |
-
controlnet_seg_model_id,
|
| 308 |
-
controlnet_seg_prompt,
|
| 309 |
-
controlnet_seg_negative_prompt,
|
| 310 |
-
controlnet_seg_guidance_scale,
|
| 311 |
-
controlnet_seg_num_inference_step,
|
| 312 |
-
],
|
| 313 |
-
outputs=[output_image],
|
| 314 |
-
cache_examples=False,
|
| 315 |
-
label="ControlNet Segmentation Example",
|
| 316 |
-
)
|
| 317 |
-
|
| 318 |
-
controlnet_seg_predict.click(
|
| 319 |
-
fn=stable_diffusion_controlnet_seg,
|
| 320 |
-
inputs=[
|
| 321 |
-
controlnet_seg_image_file,
|
| 322 |
-
controlnet_seg_model_id,
|
| 323 |
-
controlnet_seg_prompt,
|
| 324 |
-
controlnet_seg_negative_prompt,
|
| 325 |
-
controlnet_seg_guidance_scale,
|
| 326 |
-
controlnet_seg_num_inference_step,
|
| 327 |
-
],
|
| 328 |
-
outputs=[output_image],
|
| 329 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet_inpaint/__init__.py
DELETED
|
File without changes
|
diffusion_webui/controlnet_inpaint/canny_inpaint.py
DELETED
|
@@ -1,176 +0,0 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
from diffusers import (
|
| 6 |
-
ControlNetModel,
|
| 7 |
-
StableDiffusionControlNetPipeline,
|
| 8 |
-
UniPCMultistepScheduler,
|
| 9 |
-
)
|
| 10 |
-
from PIL import Image
|
| 11 |
-
|
| 12 |
-
stable_model_list = [
|
| 13 |
-
"runwayml/stable-diffusion-v1-5",
|
| 14 |
-
"stabilityai/stable-diffusion-2-1",
|
| 15 |
-
]
|
| 16 |
-
|
| 17 |
-
controlnet_canny_model_list = [
|
| 18 |
-
"lllyasviel/sd-controlnet-canny",
|
| 19 |
-
"thibaud/controlnet-sd21-canny-diffusers",
|
| 20 |
-
]
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 24 |
-
|
| 25 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 26 |
-
|
| 27 |
-
data_list = [
|
| 28 |
-
"data/test.png",
|
| 29 |
-
]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def controlnet_canny(
|
| 33 |
-
dict_image: str,
|
| 34 |
-
controlnet_model_path: str,
|
| 35 |
-
):
|
| 36 |
-
image = dict_image["image"].convert("RGB").resize((512, 512))
|
| 37 |
-
image = np.array(image)
|
| 38 |
-
|
| 39 |
-
image = cv2.Canny(image, 100, 200)
|
| 40 |
-
image = image[:, :, None]
|
| 41 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 42 |
-
image = Image.fromarray(image)
|
| 43 |
-
|
| 44 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
-
controlnet_model_path, torch_dtype=torch.float16
|
| 46 |
-
)
|
| 47 |
-
return controlnet, image
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def stable_diffusion_controlnet_canny(
|
| 51 |
-
image_path: str,
|
| 52 |
-
stable_model_path: str,
|
| 53 |
-
controlnet_model_path: str,
|
| 54 |
-
prompt: str,
|
| 55 |
-
negative_prompt: str,
|
| 56 |
-
guidance_scale: int,
|
| 57 |
-
num_inference_step: int,
|
| 58 |
-
):
|
| 59 |
-
|
| 60 |
-
controlnet, image = controlnet_canny(
|
| 61 |
-
image_path=image_path, controlnet_model_path=controlnet_model_path
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 65 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 66 |
-
controlnet=controlnet,
|
| 67 |
-
safety_checker=None,
|
| 68 |
-
torch_dtype=torch.float16,
|
| 69 |
-
)
|
| 70 |
-
pipe.to("cuda")
|
| 71 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 72 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 73 |
-
|
| 74 |
-
output = pipe(
|
| 75 |
-
prompt=prompt,
|
| 76 |
-
image=image,
|
| 77 |
-
negative_prompt=negative_prompt,
|
| 78 |
-
num_inference_steps=num_inference_step,
|
| 79 |
-
guidance_scale=guidance_scale,
|
| 80 |
-
).images
|
| 81 |
-
|
| 82 |
-
return output[0]
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def stable_diffusion_controlnet_canny_app():
|
| 86 |
-
with gr.Blocks():
|
| 87 |
-
with gr.Row():
|
| 88 |
-
with gr.Column():
|
| 89 |
-
controlnet_canny_image_file = gr.Image(
|
| 90 |
-
type="filepath", label="Image"
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 94 |
-
choices=stable_model_list,
|
| 95 |
-
value=stable_model_list[0],
|
| 96 |
-
label="Stable Model Id",
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
controlnet_canny_model_id = gr.Dropdown(
|
| 100 |
-
choices=controlnet_canny_model_list,
|
| 101 |
-
value=controlnet_canny_model_list[0],
|
| 102 |
-
label="Controlnet Model Id",
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
controlnet_canny_prompt = gr.Textbox(
|
| 106 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
controlnet_canny_negative_prompt = gr.Textbox(
|
| 110 |
-
lines=1,
|
| 111 |
-
value=stable_negative_prompt_list[0],
|
| 112 |
-
label="Negative Prompt",
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
-
controlnet_canny_guidance_scale = gr.Slider(
|
| 117 |
-
minimum=0.1,
|
| 118 |
-
maximum=15,
|
| 119 |
-
step=0.1,
|
| 120 |
-
value=7.5,
|
| 121 |
-
label="Guidance Scale",
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
controlnet_canny_num_inference_step = gr.Slider(
|
| 125 |
-
minimum=1,
|
| 126 |
-
maximum=100,
|
| 127 |
-
step=1,
|
| 128 |
-
value=50,
|
| 129 |
-
label="Num Inference Step",
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
controlnet_canny_predict = gr.Button(value="Generator")
|
| 133 |
-
|
| 134 |
-
with gr.Column():
|
| 135 |
-
output_image = gr.Image(label="Output")
|
| 136 |
-
|
| 137 |
-
gr.Examples(
|
| 138 |
-
fn=stable_diffusion_controlnet_canny,
|
| 139 |
-
examples=[
|
| 140 |
-
[
|
| 141 |
-
data_list[0],
|
| 142 |
-
stable_model_list[0],
|
| 143 |
-
controlnet_canny_model_list[0],
|
| 144 |
-
stable_prompt_list[0],
|
| 145 |
-
stable_negative_prompt_list[0],
|
| 146 |
-
7.5,
|
| 147 |
-
50,
|
| 148 |
-
]
|
| 149 |
-
],
|
| 150 |
-
inputs=[
|
| 151 |
-
controlnet_canny_image_file,
|
| 152 |
-
controlnet_canny_stable_model_id,
|
| 153 |
-
controlnet_canny_model_id,
|
| 154 |
-
controlnet_canny_prompt,
|
| 155 |
-
controlnet_canny_negative_prompt,
|
| 156 |
-
controlnet_canny_guidance_scale,
|
| 157 |
-
controlnet_canny_num_inference_step,
|
| 158 |
-
],
|
| 159 |
-
outputs=[output_image],
|
| 160 |
-
cache_examples=False,
|
| 161 |
-
label="Controlnet Canny Example",
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
controlnet_canny_predict.click(
|
| 165 |
-
fn=stable_diffusion_controlnet_canny,
|
| 166 |
-
inputs=[
|
| 167 |
-
controlnet_canny_image_file,
|
| 168 |
-
controlnet_canny_stable_model_id,
|
| 169 |
-
controlnet_canny_model_id,
|
| 170 |
-
controlnet_canny_prompt,
|
| 171 |
-
controlnet_canny_negative_prompt,
|
| 172 |
-
controlnet_canny_guidance_scale,
|
| 173 |
-
controlnet_canny_num_inference_step,
|
| 174 |
-
],
|
| 175 |
-
outputs=[output_image],
|
| 176 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet_inpaint/controlnet_inpaint_app.py
DELETED
|
@@ -1,159 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
from diffusers import UniPCMultistepScheduler
|
| 5 |
-
from PIL import Image
|
| 6 |
-
|
| 7 |
-
from diffusion_webui.controlnet_inpaint.canny_inpaint import controlnet_canny
|
| 8 |
-
from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
| 9 |
-
StableDiffusionControlNetInpaintPipeline,
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
stable_inpaint_model_list = [
|
| 13 |
-
"runwayml/stable-diffusion-inpainting",
|
| 14 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
| 15 |
-
]
|
| 16 |
-
|
| 17 |
-
controlnet_model_list = [
|
| 18 |
-
"lllyasviel/sd-controlnet-canny",
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
prompt_list = [
|
| 22 |
-
"a red panda sitting on a bench",
|
| 23 |
-
]
|
| 24 |
-
|
| 25 |
-
negative_prompt_list = [
|
| 26 |
-
"bad, ugly",
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def load_img(image_path: str):
|
| 31 |
-
image = Image.open(image_path)
|
| 32 |
-
image = np.array(image)
|
| 33 |
-
image = Image.fromarray(image)
|
| 34 |
-
|
| 35 |
-
return image
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def stable_diffusion_inpiant_controlnet_canny(
|
| 39 |
-
dict_image: str,
|
| 40 |
-
stable_model_path: str,
|
| 41 |
-
controlnet_model_path: str,
|
| 42 |
-
prompt: str,
|
| 43 |
-
negative_prompt: str,
|
| 44 |
-
controlnet_conditioning_scale: str,
|
| 45 |
-
guidance_scale: int,
|
| 46 |
-
num_inference_steps: int,
|
| 47 |
-
):
|
| 48 |
-
normal_image = dict_image["image"].convert("RGB").resize((512, 512))
|
| 49 |
-
mask_image = dict_image["mask"].convert("RGB").resize((512, 512))
|
| 50 |
-
|
| 51 |
-
controlnet, control_image = controlnet_canny(
|
| 52 |
-
dict_image=dict_image,
|
| 53 |
-
controlnet_model_path=controlnet_model_path,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 57 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 58 |
-
controlnet=controlnet,
|
| 59 |
-
torch_dtype=torch.float16,
|
| 60 |
-
)
|
| 61 |
-
pipe.to("cuda")
|
| 62 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 63 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 64 |
-
|
| 65 |
-
generator = torch.manual_seed(0)
|
| 66 |
-
|
| 67 |
-
output = pipe(
|
| 68 |
-
prompt=prompt,
|
| 69 |
-
negative_prompt=negative_prompt,
|
| 70 |
-
num_inference_steps=num_inference_steps,
|
| 71 |
-
generator=generator,
|
| 72 |
-
image=normal_image,
|
| 73 |
-
control_image=control_image,
|
| 74 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 75 |
-
guidance_scale=guidance_scale,
|
| 76 |
-
mask_image=mask_image,
|
| 77 |
-
).images
|
| 78 |
-
|
| 79 |
-
return output[0]
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def stable_diffusion_inpiant_controlnet_canny_app():
|
| 83 |
-
with gr.Blocks():
|
| 84 |
-
with gr.Row():
|
| 85 |
-
with gr.Column():
|
| 86 |
-
inpaint_image_file = gr.Image(
|
| 87 |
-
source="upload",
|
| 88 |
-
tool="sketch",
|
| 89 |
-
elem_id="image_upload",
|
| 90 |
-
type="pil",
|
| 91 |
-
label="Upload",
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
inpaint_model_id = gr.Dropdown(
|
| 95 |
-
choices=stable_inpaint_model_list,
|
| 96 |
-
value=stable_inpaint_model_list[0],
|
| 97 |
-
label="Inpaint Model Id",
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
inpaint_controlnet_model_id = gr.Dropdown(
|
| 101 |
-
choices=controlnet_model_list,
|
| 102 |
-
value=controlnet_model_list[0],
|
| 103 |
-
label="ControlNet Model Id",
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
inpaint_prompt = gr.Textbox(
|
| 107 |
-
lines=1, value=prompt_list[0], label="Prompt"
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
inpaint_negative_prompt = gr.Textbox(
|
| 111 |
-
lines=1,
|
| 112 |
-
value=negative_prompt_list[0],
|
| 113 |
-
label="Negative Prompt",
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 117 |
-
controlnet_conditioning_scale = gr.Slider(
|
| 118 |
-
minimum=0.1,
|
| 119 |
-
maximum=1,
|
| 120 |
-
step=0.1,
|
| 121 |
-
value=0.5,
|
| 122 |
-
label="ControlNet Conditioning Scale",
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
inpaint_guidance_scale = gr.Slider(
|
| 126 |
-
minimum=0.1,
|
| 127 |
-
maximum=15,
|
| 128 |
-
step=0.1,
|
| 129 |
-
value=7.5,
|
| 130 |
-
label="Guidance Scale",
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
inpaint_num_inference_step = gr.Slider(
|
| 134 |
-
minimum=1,
|
| 135 |
-
maximum=100,
|
| 136 |
-
step=1,
|
| 137 |
-
value=50,
|
| 138 |
-
label="Num Inference Step",
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
inpaint_predict = gr.Button(value="Generator")
|
| 142 |
-
|
| 143 |
-
with gr.Column():
|
| 144 |
-
output_image = gr.Image(label="Outputs")
|
| 145 |
-
|
| 146 |
-
inpaint_predict.click(
|
| 147 |
-
fn=stable_diffusion_inpiant_controlnet_canny,
|
| 148 |
-
inputs=[
|
| 149 |
-
inpaint_image_file,
|
| 150 |
-
inpaint_model_id,
|
| 151 |
-
inpaint_controlnet_model_id,
|
| 152 |
-
inpaint_prompt,
|
| 153 |
-
inpaint_negative_prompt,
|
| 154 |
-
controlnet_conditioning_scale,
|
| 155 |
-
inpaint_guidance_scale,
|
| 156 |
-
inpaint_num_inference_step,
|
| 157 |
-
],
|
| 158 |
-
outputs=output_image,
|
| 159 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/controlnet_inpaint/pipeline_stable_diffusion_controlnet_inpaint.py
DELETED
|
@@ -1,607 +0,0 @@
|
|
| 1 |
-
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import numpy as np
|
| 16 |
-
import PIL.Image
|
| 17 |
-
import torch
|
| 18 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import *
|
| 19 |
-
|
| 20 |
-
EXAMPLE_DOC_STRING = """
|
| 21 |
-
Examples:
|
| 22 |
-
```py
|
| 23 |
-
>>> # !pip install opencv-python transformers accelerate
|
| 24 |
-
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 25 |
-
>>> from diffusers.utils import load_image
|
| 26 |
-
>>> import numpy as np
|
| 27 |
-
>>> import torch
|
| 28 |
-
|
| 29 |
-
>>> import cv2
|
| 30 |
-
>>> from PIL import Image
|
| 31 |
-
>>> # download an image
|
| 32 |
-
>>> image = load_image(
|
| 33 |
-
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
| 34 |
-
... )
|
| 35 |
-
>>> image = np.array(image)
|
| 36 |
-
>>> mask_image = load_image(
|
| 37 |
-
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
| 38 |
-
... )
|
| 39 |
-
>>> mask_image = np.array(mask_image)
|
| 40 |
-
>>> # get canny image
|
| 41 |
-
>>> canny_image = cv2.Canny(image, 100, 200)
|
| 42 |
-
>>> canny_image = canny_image[:, :, None]
|
| 43 |
-
>>> canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
| 44 |
-
>>> canny_image = Image.fromarray(canny_image)
|
| 45 |
-
|
| 46 |
-
>>> # load control net and stable diffusion v1-5
|
| 47 |
-
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
| 48 |
-
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 49 |
-
... "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
|
| 50 |
-
... )
|
| 51 |
-
|
| 52 |
-
>>> # speed up diffusion process with faster scheduler and memory optimization
|
| 53 |
-
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 54 |
-
>>> # remove following line if xformers is not installed
|
| 55 |
-
>>> pipe.enable_xformers_memory_efficient_attention()
|
| 56 |
-
|
| 57 |
-
>>> pipe.enable_model_cpu_offload()
|
| 58 |
-
|
| 59 |
-
>>> # generate image
|
| 60 |
-
>>> generator = torch.manual_seed(0)
|
| 61 |
-
>>> image = pipe(
|
| 62 |
-
... "futuristic-looking doggo",
|
| 63 |
-
... num_inference_steps=20,
|
| 64 |
-
... generator=generator,
|
| 65 |
-
... image=image,
|
| 66 |
-
... control_image=canny_image,
|
| 67 |
-
... mask_image=mask_image
|
| 68 |
-
... ).images[0]
|
| 69 |
-
```
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def prepare_mask_and_masked_image(image, mask):
|
| 74 |
-
"""
|
| 75 |
-
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
| 76 |
-
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
| 77 |
-
``image`` and ``1`` for the ``mask``.
|
| 78 |
-
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
| 79 |
-
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
| 80 |
-
Args:
|
| 81 |
-
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
| 82 |
-
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
| 83 |
-
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
| 84 |
-
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
| 85 |
-
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
| 86 |
-
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
| 87 |
-
Raises:
|
| 88 |
-
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
| 89 |
-
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
| 90 |
-
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
| 91 |
-
(ot the other way around).
|
| 92 |
-
Returns:
|
| 93 |
-
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
| 94 |
-
dimensions: ``batch x channels x height x width``.
|
| 95 |
-
"""
|
| 96 |
-
if isinstance(image, torch.Tensor):
|
| 97 |
-
if not isinstance(mask, torch.Tensor):
|
| 98 |
-
raise TypeError(
|
| 99 |
-
f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not"
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
# Batch single image
|
| 103 |
-
if image.ndim == 3:
|
| 104 |
-
assert (
|
| 105 |
-
image.shape[0] == 3
|
| 106 |
-
), "Image outside a batch should be of shape (3, H, W)"
|
| 107 |
-
image = image.unsqueeze(0)
|
| 108 |
-
|
| 109 |
-
# Batch and add channel dim for single mask
|
| 110 |
-
if mask.ndim == 2:
|
| 111 |
-
mask = mask.unsqueeze(0).unsqueeze(0)
|
| 112 |
-
|
| 113 |
-
# Batch single mask or add channel dim
|
| 114 |
-
if mask.ndim == 3:
|
| 115 |
-
# Single batched mask, no channel dim or single mask not batched but channel dim
|
| 116 |
-
if mask.shape[0] == 1:
|
| 117 |
-
mask = mask.unsqueeze(0)
|
| 118 |
-
|
| 119 |
-
# Batched masks no channel dim
|
| 120 |
-
else:
|
| 121 |
-
mask = mask.unsqueeze(1)
|
| 122 |
-
|
| 123 |
-
assert (
|
| 124 |
-
image.ndim == 4 and mask.ndim == 4
|
| 125 |
-
), "Image and Mask must have 4 dimensions"
|
| 126 |
-
assert (
|
| 127 |
-
image.shape[-2:] == mask.shape[-2:]
|
| 128 |
-
), "Image and Mask must have the same spatial dimensions"
|
| 129 |
-
assert (
|
| 130 |
-
image.shape[0] == mask.shape[0]
|
| 131 |
-
), "Image and Mask must have the same batch size"
|
| 132 |
-
|
| 133 |
-
# Check image is in [-1, 1]
|
| 134 |
-
if image.min() < -1 or image.max() > 1:
|
| 135 |
-
raise ValueError("Image should be in [-1, 1] range")
|
| 136 |
-
|
| 137 |
-
# Check mask is in [0, 1]
|
| 138 |
-
if mask.min() < 0 or mask.max() > 1:
|
| 139 |
-
raise ValueError("Mask should be in [0, 1] range")
|
| 140 |
-
|
| 141 |
-
# Binarize mask
|
| 142 |
-
mask[mask < 0.5] = 0
|
| 143 |
-
mask[mask >= 0.5] = 1
|
| 144 |
-
|
| 145 |
-
# Image as float32
|
| 146 |
-
image = image.to(dtype=torch.float32)
|
| 147 |
-
elif isinstance(mask, torch.Tensor):
|
| 148 |
-
raise TypeError(
|
| 149 |
-
f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not"
|
| 150 |
-
)
|
| 151 |
-
else:
|
| 152 |
-
# preprocess image
|
| 153 |
-
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
| 154 |
-
image = [image]
|
| 155 |
-
|
| 156 |
-
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
| 157 |
-
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
| 158 |
-
image = np.concatenate(image, axis=0)
|
| 159 |
-
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
| 160 |
-
image = np.concatenate([i[None, :] for i in image], axis=0)
|
| 161 |
-
|
| 162 |
-
image = image.transpose(0, 3, 1, 2)
|
| 163 |
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 164 |
-
|
| 165 |
-
# preprocess mask
|
| 166 |
-
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
| 167 |
-
mask = [mask]
|
| 168 |
-
|
| 169 |
-
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
| 170 |
-
mask = np.concatenate(
|
| 171 |
-
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
|
| 172 |
-
)
|
| 173 |
-
mask = mask.astype(np.float32) / 255.0
|
| 174 |
-
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 175 |
-
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
| 176 |
-
|
| 177 |
-
mask[mask < 0.5] = 0
|
| 178 |
-
mask[mask >= 0.5] = 1
|
| 179 |
-
mask = torch.from_numpy(mask)
|
| 180 |
-
|
| 181 |
-
masked_image = image * (mask < 0.5)
|
| 182 |
-
|
| 183 |
-
return mask, masked_image
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
class StableDiffusionControlNetInpaintPipeline(
|
| 187 |
-
StableDiffusionControlNetPipeline
|
| 188 |
-
):
|
| 189 |
-
r"""
|
| 190 |
-
Pipeline for text-guided image inpainting using Stable Diffusion with ControlNet guidance.
|
| 191 |
-
|
| 192 |
-
This model inherits from [`StableDiffusionControlNetPipeline`]. Check the superclass documentation for the generic methods the
|
| 193 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 194 |
-
|
| 195 |
-
Args:
|
| 196 |
-
vae ([`AutoencoderKL`]):
|
| 197 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 198 |
-
text_encoder ([`CLIPTextModel`]):
|
| 199 |
-
Frozen text-encoder. Stable Diffusion uses the text portion of
|
| 200 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 201 |
-
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 202 |
-
tokenizer (`CLIPTokenizer`):
|
| 203 |
-
Tokenizer of class
|
| 204 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 205 |
-
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 206 |
-
controlnet ([`ControlNetModel`]):
|
| 207 |
-
Provides additional conditioning to the unet during the denoising process
|
| 208 |
-
scheduler ([`SchedulerMixin`]):
|
| 209 |
-
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 210 |
-
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 211 |
-
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 212 |
-
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 213 |
-
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
| 214 |
-
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 215 |
-
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 216 |
-
"""
|
| 217 |
-
|
| 218 |
-
def prepare_mask_latents(
|
| 219 |
-
self,
|
| 220 |
-
mask,
|
| 221 |
-
masked_image,
|
| 222 |
-
batch_size,
|
| 223 |
-
height,
|
| 224 |
-
width,
|
| 225 |
-
dtype,
|
| 226 |
-
device,
|
| 227 |
-
generator,
|
| 228 |
-
do_classifier_free_guidance,
|
| 229 |
-
):
|
| 230 |
-
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 231 |
-
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 232 |
-
# and half precision
|
| 233 |
-
mask = torch.nn.functional.interpolate(
|
| 234 |
-
mask,
|
| 235 |
-
size=(
|
| 236 |
-
height // self.vae_scale_factor,
|
| 237 |
-
width // self.vae_scale_factor,
|
| 238 |
-
),
|
| 239 |
-
)
|
| 240 |
-
mask = mask.to(device=device, dtype=dtype)
|
| 241 |
-
|
| 242 |
-
masked_image = masked_image.to(device=device, dtype=dtype)
|
| 243 |
-
|
| 244 |
-
# encode the mask image into latents space so we can concatenate it to the latents
|
| 245 |
-
if isinstance(generator, list):
|
| 246 |
-
masked_image_latents = [
|
| 247 |
-
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(
|
| 248 |
-
generator=generator[i]
|
| 249 |
-
)
|
| 250 |
-
for i in range(batch_size)
|
| 251 |
-
]
|
| 252 |
-
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
| 253 |
-
else:
|
| 254 |
-
masked_image_latents = self.vae.encode(
|
| 255 |
-
masked_image
|
| 256 |
-
).latent_dist.sample(generator=generator)
|
| 257 |
-
masked_image_latents = (
|
| 258 |
-
self.vae.config.scaling_factor * masked_image_latents
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 262 |
-
if mask.shape[0] < batch_size:
|
| 263 |
-
if not batch_size % mask.shape[0] == 0:
|
| 264 |
-
raise ValueError(
|
| 265 |
-
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
| 266 |
-
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
| 267 |
-
" of masks that you pass is divisible by the total requested batch size."
|
| 268 |
-
)
|
| 269 |
-
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
| 270 |
-
if masked_image_latents.shape[0] < batch_size:
|
| 271 |
-
if not batch_size % masked_image_latents.shape[0] == 0:
|
| 272 |
-
raise ValueError(
|
| 273 |
-
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
| 274 |
-
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 275 |
-
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 276 |
-
)
|
| 277 |
-
masked_image_latents = masked_image_latents.repeat(
|
| 278 |
-
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
| 282 |
-
masked_image_latents = (
|
| 283 |
-
torch.cat([masked_image_latents] * 2)
|
| 284 |
-
if do_classifier_free_guidance
|
| 285 |
-
else masked_image_latents
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
# aligning device to prevent device errors when concating it with the latent model input
|
| 289 |
-
masked_image_latents = masked_image_latents.to(
|
| 290 |
-
device=device, dtype=dtype
|
| 291 |
-
)
|
| 292 |
-
return mask, masked_image_latents
|
| 293 |
-
|
| 294 |
-
@torch.no_grad()
|
| 295 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 296 |
-
def __call__(
|
| 297 |
-
self,
|
| 298 |
-
prompt: Union[str, List[str]] = None,
|
| 299 |
-
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 300 |
-
control_image: Union[
|
| 301 |
-
torch.FloatTensor,
|
| 302 |
-
PIL.Image.Image,
|
| 303 |
-
List[torch.FloatTensor],
|
| 304 |
-
List[PIL.Image.Image],
|
| 305 |
-
] = None,
|
| 306 |
-
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 307 |
-
height: Optional[int] = None,
|
| 308 |
-
width: Optional[int] = None,
|
| 309 |
-
num_inference_steps: int = 50,
|
| 310 |
-
guidance_scale: float = 7.5,
|
| 311 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 312 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 313 |
-
eta: float = 0.0,
|
| 314 |
-
generator: Optional[
|
| 315 |
-
Union[torch.Generator, List[torch.Generator]]
|
| 316 |
-
] = None,
|
| 317 |
-
latents: Optional[torch.FloatTensor] = None,
|
| 318 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 319 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 320 |
-
output_type: Optional[str] = "pil",
|
| 321 |
-
return_dict: bool = True,
|
| 322 |
-
callback: Optional[
|
| 323 |
-
Callable[[int, int, torch.FloatTensor], None]
|
| 324 |
-
] = None,
|
| 325 |
-
callback_steps: int = 1,
|
| 326 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 327 |
-
controlnet_conditioning_scale: float = 1.0,
|
| 328 |
-
):
|
| 329 |
-
r"""
|
| 330 |
-
Function invoked when calling the pipeline for generation.
|
| 331 |
-
Args:
|
| 332 |
-
prompt (`str` or `List[str]`, *optional*):
|
| 333 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 334 |
-
instead.
|
| 335 |
-
image (`PIL.Image.Image`):
|
| 336 |
-
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
| 337 |
-
be masked out with `mask_image` and repainted according to `prompt`.
|
| 338 |
-
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
|
| 339 |
-
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
| 340 |
-
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
| 341 |
-
also be accepted as an image. The control image is automatically resized to fit the output image.
|
| 342 |
-
mask_image (`PIL.Image.Image`):
|
| 343 |
-
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 344 |
-
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
| 345 |
-
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
| 346 |
-
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 347 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 348 |
-
The height in pixels of the generated image.
|
| 349 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 350 |
-
The width in pixels of the generated image.
|
| 351 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 352 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 353 |
-
expense of slower inference.
|
| 354 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 355 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 356 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 357 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 358 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 359 |
-
usually at the expense of lower image quality.
|
| 360 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
| 361 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 362 |
-
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
| 363 |
-
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 364 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 365 |
-
The number of images to generate per prompt.
|
| 366 |
-
eta (`float`, *optional*, defaults to 0.0):
|
| 367 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 368 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 369 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 370 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 371 |
-
to make generation deterministic.
|
| 372 |
-
latents (`torch.FloatTensor`, *optional*):
|
| 373 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 374 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 375 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
| 376 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 377 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 378 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
| 379 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 380 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 381 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 382 |
-
argument.
|
| 383 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 384 |
-
The output format of the generate image. Choose between
|
| 385 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 386 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 387 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 388 |
-
plain tuple.
|
| 389 |
-
callback (`Callable`, *optional*):
|
| 390 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 391 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 392 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
| 393 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 394 |
-
called at every step.
|
| 395 |
-
cross_attention_kwargs (`dict`, *optional*):
|
| 396 |
-
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
| 397 |
-
`self.processor` in
|
| 398 |
-
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 399 |
-
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
| 400 |
-
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 401 |
-
to the residual in the original unet.
|
| 402 |
-
Examples:
|
| 403 |
-
Returns:
|
| 404 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 405 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 406 |
-
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 407 |
-
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 408 |
-
(nsfw) content, according to the `safety_checker`.
|
| 409 |
-
"""
|
| 410 |
-
# 0. Default height and width to unet
|
| 411 |
-
height, width = self._default_height_width(height, width, control_image)
|
| 412 |
-
|
| 413 |
-
# 1. Check inputs. Raise error if not correct
|
| 414 |
-
self.check_inputs(
|
| 415 |
-
prompt,
|
| 416 |
-
control_image,
|
| 417 |
-
height,
|
| 418 |
-
width,
|
| 419 |
-
callback_steps,
|
| 420 |
-
negative_prompt,
|
| 421 |
-
prompt_embeds,
|
| 422 |
-
negative_prompt_embeds,
|
| 423 |
-
)
|
| 424 |
-
|
| 425 |
-
# 2. Define call parameters
|
| 426 |
-
if prompt is not None and isinstance(prompt, str):
|
| 427 |
-
batch_size = 1
|
| 428 |
-
elif prompt is not None and isinstance(prompt, list):
|
| 429 |
-
batch_size = len(prompt)
|
| 430 |
-
else:
|
| 431 |
-
batch_size = prompt_embeds.shape[0]
|
| 432 |
-
|
| 433 |
-
device = self._execution_device
|
| 434 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 435 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 436 |
-
# corresponds to doing no classifier free guidance.
|
| 437 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 438 |
-
|
| 439 |
-
# 3. Encode input prompt
|
| 440 |
-
prompt_embeds = self._encode_prompt(
|
| 441 |
-
prompt,
|
| 442 |
-
device,
|
| 443 |
-
num_images_per_prompt,
|
| 444 |
-
do_classifier_free_guidance,
|
| 445 |
-
negative_prompt,
|
| 446 |
-
prompt_embeds=prompt_embeds,
|
| 447 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 448 |
-
)
|
| 449 |
-
|
| 450 |
-
# 4. Prepare image
|
| 451 |
-
control_image = self.prepare_image(
|
| 452 |
-
control_image,
|
| 453 |
-
width,
|
| 454 |
-
height,
|
| 455 |
-
batch_size * num_images_per_prompt,
|
| 456 |
-
num_images_per_prompt,
|
| 457 |
-
device,
|
| 458 |
-
self.controlnet.dtype,
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
-
if do_classifier_free_guidance:
|
| 462 |
-
control_image = torch.cat([control_image] * 2)
|
| 463 |
-
|
| 464 |
-
# 5. Prepare timesteps
|
| 465 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 466 |
-
timesteps = self.scheduler.timesteps
|
| 467 |
-
|
| 468 |
-
# 6. Prepare latent variables
|
| 469 |
-
num_channels_latents = self.controlnet.in_channels
|
| 470 |
-
latents = self.prepare_latents(
|
| 471 |
-
batch_size * num_images_per_prompt,
|
| 472 |
-
num_channels_latents,
|
| 473 |
-
height,
|
| 474 |
-
width,
|
| 475 |
-
prompt_embeds.dtype,
|
| 476 |
-
device,
|
| 477 |
-
generator,
|
| 478 |
-
latents,
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
# EXTRA: prepare mask latents
|
| 482 |
-
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
|
| 483 |
-
mask, masked_image_latents = self.prepare_mask_latents(
|
| 484 |
-
mask,
|
| 485 |
-
masked_image,
|
| 486 |
-
batch_size * num_images_per_prompt,
|
| 487 |
-
height,
|
| 488 |
-
width,
|
| 489 |
-
prompt_embeds.dtype,
|
| 490 |
-
device,
|
| 491 |
-
generator,
|
| 492 |
-
do_classifier_free_guidance,
|
| 493 |
-
)
|
| 494 |
-
|
| 495 |
-
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 496 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 497 |
-
|
| 498 |
-
# 8. Denoising loop
|
| 499 |
-
num_warmup_steps = (
|
| 500 |
-
len(timesteps) - num_inference_steps * self.scheduler.order
|
| 501 |
-
)
|
| 502 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 503 |
-
for i, t in enumerate(timesteps):
|
| 504 |
-
# expand the latents if we are doing classifier free guidance
|
| 505 |
-
latent_model_input = (
|
| 506 |
-
torch.cat([latents] * 2)
|
| 507 |
-
if do_classifier_free_guidance
|
| 508 |
-
else latents
|
| 509 |
-
)
|
| 510 |
-
latent_model_input = self.scheduler.scale_model_input(
|
| 511 |
-
latent_model_input, t
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 515 |
-
latent_model_input,
|
| 516 |
-
t,
|
| 517 |
-
encoder_hidden_states=prompt_embeds,
|
| 518 |
-
controlnet_cond=control_image,
|
| 519 |
-
return_dict=False,
|
| 520 |
-
)
|
| 521 |
-
|
| 522 |
-
down_block_res_samples = [
|
| 523 |
-
down_block_res_sample * controlnet_conditioning_scale
|
| 524 |
-
for down_block_res_sample in down_block_res_samples
|
| 525 |
-
]
|
| 526 |
-
mid_block_res_sample *= controlnet_conditioning_scale
|
| 527 |
-
|
| 528 |
-
# predict the noise residual
|
| 529 |
-
latent_model_input = torch.cat(
|
| 530 |
-
[latent_model_input, mask, masked_image_latents], dim=1
|
| 531 |
-
)
|
| 532 |
-
noise_pred = self.unet(
|
| 533 |
-
latent_model_input,
|
| 534 |
-
t,
|
| 535 |
-
encoder_hidden_states=prompt_embeds,
|
| 536 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
| 537 |
-
down_block_additional_residuals=down_block_res_samples,
|
| 538 |
-
mid_block_additional_residual=mid_block_res_sample,
|
| 539 |
-
).sample
|
| 540 |
-
|
| 541 |
-
# perform guidance
|
| 542 |
-
if do_classifier_free_guidance:
|
| 543 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 544 |
-
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 545 |
-
noise_pred_text - noise_pred_uncond
|
| 546 |
-
)
|
| 547 |
-
|
| 548 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 549 |
-
latents = self.scheduler.step(
|
| 550 |
-
noise_pred, t, latents, **extra_step_kwargs
|
| 551 |
-
).prev_sample
|
| 552 |
-
|
| 553 |
-
# call the callback, if provided
|
| 554 |
-
if i == len(timesteps) - 1 or (
|
| 555 |
-
(i + 1) > num_warmup_steps
|
| 556 |
-
and (i + 1) % self.scheduler.order == 0
|
| 557 |
-
):
|
| 558 |
-
progress_bar.update()
|
| 559 |
-
if callback is not None and i % callback_steps == 0:
|
| 560 |
-
callback(i, t, latents)
|
| 561 |
-
|
| 562 |
-
# If we do sequential model offloading, let's offload unet and controlnet
|
| 563 |
-
# manually for max memory savings
|
| 564 |
-
if (
|
| 565 |
-
hasattr(self, "final_offload_hook")
|
| 566 |
-
and self.final_offload_hook is not None
|
| 567 |
-
):
|
| 568 |
-
self.unet.to("cpu")
|
| 569 |
-
self.controlnet.to("cpu")
|
| 570 |
-
torch.cuda.empty_cache()
|
| 571 |
-
|
| 572 |
-
if output_type == "latent":
|
| 573 |
-
image = latents
|
| 574 |
-
has_nsfw_concept = None
|
| 575 |
-
elif output_type == "pil":
|
| 576 |
-
# 8. Post-processing
|
| 577 |
-
image = self.decode_latents(latents)
|
| 578 |
-
|
| 579 |
-
# 9. Run safety checker
|
| 580 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 581 |
-
image, device, prompt_embeds.dtype
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
# 10. Convert to PIL
|
| 585 |
-
image = self.numpy_to_pil(image)
|
| 586 |
-
else:
|
| 587 |
-
# 8. Post-processing
|
| 588 |
-
image = self.decode_latents(latents)
|
| 589 |
-
|
| 590 |
-
# 9. Run safety checker
|
| 591 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 592 |
-
image, device, prompt_embeds.dtype
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
-
# Offload last model to CPU
|
| 596 |
-
if (
|
| 597 |
-
hasattr(self, "final_offload_hook")
|
| 598 |
-
and self.final_offload_hook is not None
|
| 599 |
-
):
|
| 600 |
-
self.final_offload_hook.offload()
|
| 601 |
-
|
| 602 |
-
if not return_dict:
|
| 603 |
-
return (image, has_nsfw_concept)
|
| 604 |
-
|
| 605 |
-
return StableDiffusionPipelineOutput(
|
| 606 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
| 607 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/helpers.py
DELETED
|
@@ -1,48 +0,0 @@
|
|
| 1 |
-
from diffusion_webui.controlnet.controlnet_canny import (
|
| 2 |
-
stable_diffusion_controlnet_canny,
|
| 3 |
-
stable_diffusion_controlnet_canny_app,
|
| 4 |
-
)
|
| 5 |
-
from diffusion_webui.controlnet.controlnet_depth import (
|
| 6 |
-
stable_diffusion_controlnet_depth,
|
| 7 |
-
stable_diffusion_controlnet_depth_app,
|
| 8 |
-
)
|
| 9 |
-
from diffusion_webui.controlnet.controlnet_hed import (
|
| 10 |
-
stable_diffusion_controlnet_hed,
|
| 11 |
-
stable_diffusion_controlnet_hed_app,
|
| 12 |
-
)
|
| 13 |
-
from diffusion_webui.controlnet.controlnet_mlsd import (
|
| 14 |
-
stable_diffusion_controlnet_mlsd,
|
| 15 |
-
stable_diffusion_controlnet_mlsd_app,
|
| 16 |
-
)
|
| 17 |
-
from diffusion_webui.controlnet.controlnet_pose import (
|
| 18 |
-
stable_diffusion_controlnet_pose,
|
| 19 |
-
stable_diffusion_controlnet_pose_app,
|
| 20 |
-
)
|
| 21 |
-
from diffusion_webui.controlnet.controlnet_scribble import (
|
| 22 |
-
stable_diffusion_controlnet_scribble,
|
| 23 |
-
stable_diffusion_controlnet_scribble_app,
|
| 24 |
-
)
|
| 25 |
-
from diffusion_webui.controlnet.controlnet_seg import (
|
| 26 |
-
stable_diffusion_controlnet_seg,
|
| 27 |
-
stable_diffusion_controlnet_seg_app,
|
| 28 |
-
)
|
| 29 |
-
from diffusion_webui.controlnet_inpaint.controlnet_inpaint_app import (
|
| 30 |
-
stable_diffusion_inpiant_controlnet_canny,
|
| 31 |
-
stable_diffusion_inpiant_controlnet_canny_app,
|
| 32 |
-
)
|
| 33 |
-
from diffusion_webui.stable_diffusion.img2img_app import (
|
| 34 |
-
stable_diffusion_img2img,
|
| 35 |
-
stable_diffusion_img2img_app,
|
| 36 |
-
)
|
| 37 |
-
from diffusion_webui.stable_diffusion.inpaint_app import (
|
| 38 |
-
stable_diffusion_inpaint,
|
| 39 |
-
stable_diffusion_inpaint_app,
|
| 40 |
-
)
|
| 41 |
-
from diffusion_webui.stable_diffusion.keras_txt2img import (
|
| 42 |
-
keras_stable_diffusion,
|
| 43 |
-
keras_stable_diffusion_app,
|
| 44 |
-
)
|
| 45 |
-
from diffusion_webui.stable_diffusion.text2img_app import (
|
| 46 |
-
stable_diffusion_text2img,
|
| 47 |
-
stable_diffusion_text2img_app,
|
| 48 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/stable_diffusion/__init__.py
DELETED
|
File without changes
|
diffusion_webui/stable_diffusion/img2img_app.py
DELETED
|
@@ -1,131 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline
|
| 4 |
-
from PIL import Image
|
| 5 |
-
|
| 6 |
-
stable_model_list = [
|
| 7 |
-
"runwayml/stable-diffusion-v1-5",
|
| 8 |
-
"stabilityai/stable-diffusion-2-1",
|
| 9 |
-
]
|
| 10 |
-
|
| 11 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 12 |
-
|
| 13 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 14 |
-
|
| 15 |
-
data_list = [
|
| 16 |
-
"data/test.png",
|
| 17 |
-
]
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def stable_diffusion_img2img(
|
| 21 |
-
image_path: str,
|
| 22 |
-
model_path: str,
|
| 23 |
-
prompt: str,
|
| 24 |
-
negative_prompt: str,
|
| 25 |
-
guidance_scale: int,
|
| 26 |
-
num_inference_step: int,
|
| 27 |
-
):
|
| 28 |
-
|
| 29 |
-
image = Image.open(image_path)
|
| 30 |
-
|
| 31 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 32 |
-
model_path, safety_checker=None, torch_dtype=torch.float16
|
| 33 |
-
)
|
| 34 |
-
pipe.to("cuda")
|
| 35 |
-
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 36 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 37 |
-
|
| 38 |
-
output = pipe(
|
| 39 |
-
prompt=prompt,
|
| 40 |
-
image=image,
|
| 41 |
-
negative_prompt=negative_prompt,
|
| 42 |
-
num_inference_steps=num_inference_step,
|
| 43 |
-
guidance_scale=guidance_scale,
|
| 44 |
-
).images
|
| 45 |
-
|
| 46 |
-
return output[0]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def stable_diffusion_img2img_app():
|
| 50 |
-
with gr.Blocks():
|
| 51 |
-
with gr.Row():
|
| 52 |
-
with gr.Column():
|
| 53 |
-
image2image2_image_file = gr.Image(
|
| 54 |
-
type="filepath", label="Image"
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
image2image_model_path = gr.Dropdown(
|
| 58 |
-
choices=stable_model_list,
|
| 59 |
-
value=stable_model_list[0],
|
| 60 |
-
label="Image-Image Model Id",
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
image2image_prompt = gr.Textbox(
|
| 64 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
image2image_negative_prompt = gr.Textbox(
|
| 68 |
-
lines=1,
|
| 69 |
-
value=stable_negative_prompt_list[0],
|
| 70 |
-
label="Negative Prompt",
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 74 |
-
image2image_guidance_scale = gr.Slider(
|
| 75 |
-
minimum=0.1,
|
| 76 |
-
maximum=15,
|
| 77 |
-
step=0.1,
|
| 78 |
-
value=7.5,
|
| 79 |
-
label="Guidance Scale",
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
image2image_num_inference_step = gr.Slider(
|
| 83 |
-
minimum=1,
|
| 84 |
-
maximum=100,
|
| 85 |
-
step=1,
|
| 86 |
-
value=50,
|
| 87 |
-
label="Num Inference Step",
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
image2image_predict = gr.Button(value="Generator")
|
| 91 |
-
|
| 92 |
-
with gr.Column():
|
| 93 |
-
output_image = gr.Image(label="Output")
|
| 94 |
-
|
| 95 |
-
gr.Examples(
|
| 96 |
-
fn=stable_diffusion_img2img,
|
| 97 |
-
examples=[
|
| 98 |
-
[
|
| 99 |
-
data_list[0],
|
| 100 |
-
stable_model_list[0],
|
| 101 |
-
stable_prompt_list[0],
|
| 102 |
-
stable_negative_prompt_list[0],
|
| 103 |
-
7.5,
|
| 104 |
-
50,
|
| 105 |
-
],
|
| 106 |
-
],
|
| 107 |
-
inputs=[
|
| 108 |
-
image2image2_image_file,
|
| 109 |
-
image2image_model_path,
|
| 110 |
-
image2image_prompt,
|
| 111 |
-
image2image_negative_prompt,
|
| 112 |
-
image2image_guidance_scale,
|
| 113 |
-
image2image_num_inference_step,
|
| 114 |
-
],
|
| 115 |
-
outputs=[output_image],
|
| 116 |
-
cache_examples=False,
|
| 117 |
-
label="Image-Image Generator",
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
image2image_predict.click(
|
| 121 |
-
fn=stable_diffusion_img2img,
|
| 122 |
-
inputs=[
|
| 123 |
-
image2image2_image_file,
|
| 124 |
-
image2image_model_path,
|
| 125 |
-
image2image_prompt,
|
| 126 |
-
image2image_negative_prompt,
|
| 127 |
-
image2image_guidance_scale,
|
| 128 |
-
image2image_num_inference_step,
|
| 129 |
-
],
|
| 130 |
-
outputs=[output_image],
|
| 131 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/stable_diffusion/inpaint_app.py
DELETED
|
@@ -1,105 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import DDIMScheduler, DiffusionPipeline
|
| 4 |
-
|
| 5 |
-
stable_inpiant_model_list = [
|
| 6 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
| 7 |
-
"runwayml/stable-diffusion-inpainting",
|
| 8 |
-
]
|
| 9 |
-
|
| 10 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 11 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def stable_diffusion_inpaint(
|
| 15 |
-
dict: str,
|
| 16 |
-
model_path: str,
|
| 17 |
-
prompt: str,
|
| 18 |
-
negative_prompt: str,
|
| 19 |
-
guidance_scale: int,
|
| 20 |
-
num_inference_step: int,
|
| 21 |
-
):
|
| 22 |
-
|
| 23 |
-
image = dict["image"].convert("RGB").resize((512, 512))
|
| 24 |
-
mask_image = dict["mask"].convert("RGB").resize((512, 512))
|
| 25 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 26 |
-
model_path,
|
| 27 |
-
revision="fp16",
|
| 28 |
-
torch_dtype=torch.float16,
|
| 29 |
-
)
|
| 30 |
-
pipe.to("cuda")
|
| 31 |
-
|
| 32 |
-
output = pipe(
|
| 33 |
-
prompt=prompt,
|
| 34 |
-
image=image,
|
| 35 |
-
mask_image=mask_image,
|
| 36 |
-
negative_prompt=negative_prompt,
|
| 37 |
-
num_inference_steps=num_inference_step,
|
| 38 |
-
guidance_scale=guidance_scale,
|
| 39 |
-
).images
|
| 40 |
-
|
| 41 |
-
return output[0]
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def stable_diffusion_inpaint_app():
|
| 45 |
-
with gr.Blocks():
|
| 46 |
-
with gr.Row():
|
| 47 |
-
with gr.Column():
|
| 48 |
-
inpaint_image_file = gr.Image(
|
| 49 |
-
source="upload",
|
| 50 |
-
tool="sketch",
|
| 51 |
-
elem_id="image_upload",
|
| 52 |
-
type="pil",
|
| 53 |
-
label="Upload",
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
inpaint_model_id = gr.Dropdown(
|
| 57 |
-
choices=stable_inpiant_model_list,
|
| 58 |
-
value=stable_inpiant_model_list[0],
|
| 59 |
-
label="Inpaint Model Id",
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
inpaint_prompt = gr.Textbox(
|
| 63 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
inpaint_negative_prompt = gr.Textbox(
|
| 67 |
-
lines=1,
|
| 68 |
-
value=stable_negative_prompt_list[0],
|
| 69 |
-
label="Negative Prompt",
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 73 |
-
inpaint_guidance_scale = gr.Slider(
|
| 74 |
-
minimum=0.1,
|
| 75 |
-
maximum=15,
|
| 76 |
-
step=0.1,
|
| 77 |
-
value=7.5,
|
| 78 |
-
label="Guidance Scale",
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
inpaint_num_inference_step = gr.Slider(
|
| 82 |
-
minimum=1,
|
| 83 |
-
maximum=100,
|
| 84 |
-
step=1,
|
| 85 |
-
value=50,
|
| 86 |
-
label="Num Inference Step",
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
inpaint_predict = gr.Button(value="Generator")
|
| 90 |
-
|
| 91 |
-
with gr.Column():
|
| 92 |
-
output_image = gr.Image(label="Outputs")
|
| 93 |
-
|
| 94 |
-
inpaint_predict.click(
|
| 95 |
-
fn=stable_diffusion_inpaint,
|
| 96 |
-
inputs=[
|
| 97 |
-
inpaint_image_file,
|
| 98 |
-
inpaint_model_id,
|
| 99 |
-
inpaint_prompt,
|
| 100 |
-
inpaint_negative_prompt,
|
| 101 |
-
inpaint_guidance_scale,
|
| 102 |
-
inpaint_num_inference_step,
|
| 103 |
-
],
|
| 104 |
-
outputs=output_image,
|
| 105 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/stable_diffusion/keras_txt2img.py
DELETED
|
@@ -1,131 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from huggingface_hub import from_pretrained_keras
|
| 3 |
-
from keras_cv import models
|
| 4 |
-
from tensorflow import keras
|
| 5 |
-
|
| 6 |
-
keras_model_list = [
|
| 7 |
-
"keras-dreambooth/keras_diffusion_lowpoly_world",
|
| 8 |
-
"keras-dreambooth/keras-diffusion-traditional-furniture",
|
| 9 |
-
]
|
| 10 |
-
|
| 11 |
-
stable_prompt_list = [
|
| 12 |
-
"photo of lowpoly_world",
|
| 13 |
-
"photo of traditional_furniture",
|
| 14 |
-
]
|
| 15 |
-
|
| 16 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 17 |
-
|
| 18 |
-
keras.mixed_precision.set_global_policy("mixed_float16")
|
| 19 |
-
dreambooth_model = models.StableDiffusion(
|
| 20 |
-
img_width=512,
|
| 21 |
-
img_height=512,
|
| 22 |
-
jit_compile=True,
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def keras_stable_diffusion(
|
| 27 |
-
model_path: str,
|
| 28 |
-
prompt: str,
|
| 29 |
-
negative_prompt: str,
|
| 30 |
-
num_imgs_to_gen: int,
|
| 31 |
-
num_steps: int,
|
| 32 |
-
):
|
| 33 |
-
"""
|
| 34 |
-
This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model.
|
| 35 |
-
Args:
|
| 36 |
-
prompt (str): The text input given by the user based on which images will be generated.
|
| 37 |
-
num_imgs_to_gen (int): The number of images to be generated using given prompt.
|
| 38 |
-
num_steps (int): The number of denoising steps
|
| 39 |
-
Returns:
|
| 40 |
-
generated_img (List): List of images that were generated using the model
|
| 41 |
-
"""
|
| 42 |
-
loaded_diffusion_model = from_pretrained_keras(model_path)
|
| 43 |
-
dreambooth_model._diffusion_model = loaded_diffusion_model
|
| 44 |
-
|
| 45 |
-
generated_img = dreambooth_model.text_to_image(
|
| 46 |
-
prompt,
|
| 47 |
-
negative_prompt=negative_prompt,
|
| 48 |
-
batch_size=num_imgs_to_gen,
|
| 49 |
-
num_steps=num_steps,
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
return generated_img
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def keras_stable_diffusion_app():
|
| 56 |
-
with gr.Blocks():
|
| 57 |
-
with gr.Row():
|
| 58 |
-
with gr.Column():
|
| 59 |
-
keras_text2image_model_path = gr.Dropdown(
|
| 60 |
-
choices=keras_model_list,
|
| 61 |
-
value=keras_model_list[0],
|
| 62 |
-
label="Text-Image Model Id",
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
keras_text2image_prompt = gr.Textbox(
|
| 66 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
keras_text2image_negative_prompt = gr.Textbox(
|
| 70 |
-
lines=1,
|
| 71 |
-
value=stable_negative_prompt_list[0],
|
| 72 |
-
label="Negative Prompt",
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
keras_text2image_guidance_scale = gr.Slider(
|
| 76 |
-
minimum=0.1,
|
| 77 |
-
maximum=15,
|
| 78 |
-
step=0.1,
|
| 79 |
-
value=7.5,
|
| 80 |
-
label="Guidance Scale",
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
keras_text2image_num_inference_step = gr.Slider(
|
| 84 |
-
minimum=1,
|
| 85 |
-
maximum=100,
|
| 86 |
-
step=1,
|
| 87 |
-
value=50,
|
| 88 |
-
label="Num Inference Step",
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
keras_text2image_predict = gr.Button(value="Generator")
|
| 92 |
-
|
| 93 |
-
with gr.Column():
|
| 94 |
-
output_image = gr.Gallery(label="Outputs").style(grid=(1, 2))
|
| 95 |
-
|
| 96 |
-
gr.Examples(
|
| 97 |
-
fn=keras_stable_diffusion,
|
| 98 |
-
inputs=[
|
| 99 |
-
keras_text2image_model_path,
|
| 100 |
-
keras_text2image_prompt,
|
| 101 |
-
keras_text2image_negative_prompt,
|
| 102 |
-
keras_text2image_guidance_scale,
|
| 103 |
-
keras_text2image_num_inference_step,
|
| 104 |
-
],
|
| 105 |
-
outputs=[output_image],
|
| 106 |
-
examples=[
|
| 107 |
-
[
|
| 108 |
-
keras_model_list[0],
|
| 109 |
-
stable_prompt_list[0],
|
| 110 |
-
stable_negative_prompt_list[0],
|
| 111 |
-
7.5,
|
| 112 |
-
50,
|
| 113 |
-
512,
|
| 114 |
-
512,
|
| 115 |
-
],
|
| 116 |
-
],
|
| 117 |
-
label="Keras Stable Diffusion Example",
|
| 118 |
-
cache_examples=False,
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
keras_text2image_predict.click(
|
| 122 |
-
fn=keras_stable_diffusion,
|
| 123 |
-
inputs=[
|
| 124 |
-
keras_text2image_model_path,
|
| 125 |
-
keras_text2image_prompt,
|
| 126 |
-
keras_text2image_negative_prompt,
|
| 127 |
-
keras_text2image_guidance_scale,
|
| 128 |
-
keras_text2image_num_inference_step,
|
| 129 |
-
],
|
| 130 |
-
outputs=output_image,
|
| 131 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_webui/stable_diffusion/text2img_app.py
DELETED
|
@@ -1,139 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
| 4 |
-
|
| 5 |
-
stable_model_list = [
|
| 6 |
-
"andite/anything-v4.0",
|
| 7 |
-
]
|
| 8 |
-
|
| 9 |
-
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 10 |
-
|
| 11 |
-
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def stable_diffusion_text2img(
|
| 15 |
-
model_path: str,
|
| 16 |
-
prompt: str,
|
| 17 |
-
negative_prompt: str,
|
| 18 |
-
guidance_scale: int,
|
| 19 |
-
num_inference_step: int,
|
| 20 |
-
height: int,
|
| 21 |
-
width: int,
|
| 22 |
-
):
|
| 23 |
-
|
| 24 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 25 |
-
model_path, safety_checker=None, torch_dtype=torch.float16
|
| 26 |
-
).to("cuda")
|
| 27 |
-
|
| 28 |
-
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 29 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 30 |
-
|
| 31 |
-
images = pipe(
|
| 32 |
-
prompt,
|
| 33 |
-
height=height,
|
| 34 |
-
width=width,
|
| 35 |
-
negative_prompt=negative_prompt,
|
| 36 |
-
num_inference_steps=num_inference_step,
|
| 37 |
-
guidance_scale=guidance_scale,
|
| 38 |
-
).images
|
| 39 |
-
|
| 40 |
-
return images[0]
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def stable_diffusion_text2img_app():
|
| 44 |
-
with gr.Blocks():
|
| 45 |
-
with gr.Row():
|
| 46 |
-
with gr.Column():
|
| 47 |
-
text2image_model_path = gr.Dropdown(
|
| 48 |
-
choices=stable_model_list,
|
| 49 |
-
value=stable_model_list[0],
|
| 50 |
-
label="Text-Image Model Id",
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
text2image_prompt = gr.Textbox(
|
| 54 |
-
lines=1, value=stable_prompt_list[0], label="Prompt"
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
text2image_negative_prompt = gr.Textbox(
|
| 58 |
-
lines=1,
|
| 59 |
-
value=stable_negative_prompt_list[0],
|
| 60 |
-
label="Negative Prompt",
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 64 |
-
text2image_guidance_scale = gr.Slider(
|
| 65 |
-
minimum=0.1,
|
| 66 |
-
maximum=15,
|
| 67 |
-
step=0.1,
|
| 68 |
-
value=7.5,
|
| 69 |
-
label="Guidance Scale",
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
text2image_num_inference_step = gr.Slider(
|
| 73 |
-
minimum=1,
|
| 74 |
-
maximum=100,
|
| 75 |
-
step=1,
|
| 76 |
-
value=50,
|
| 77 |
-
label="Num Inference Step",
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
text2image_height = gr.Slider(
|
| 81 |
-
minimum=128,
|
| 82 |
-
maximum=1280,
|
| 83 |
-
step=32,
|
| 84 |
-
value=512,
|
| 85 |
-
label="Image Height",
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
text2image_width = gr.Slider(
|
| 89 |
-
minimum=128,
|
| 90 |
-
maximum=1280,
|
| 91 |
-
step=32,
|
| 92 |
-
value=768,
|
| 93 |
-
label="Image Width",
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
text2image_predict = gr.Button(value="Generator")
|
| 97 |
-
|
| 98 |
-
with gr.Column():
|
| 99 |
-
output_image = gr.Image(label="Output")
|
| 100 |
-
|
| 101 |
-
gr.Examples(
|
| 102 |
-
examples=[
|
| 103 |
-
[
|
| 104 |
-
stable_model_list[0],
|
| 105 |
-
stable_prompt_list[0],
|
| 106 |
-
stable_negative_prompt_list[0],
|
| 107 |
-
7.5,
|
| 108 |
-
50,
|
| 109 |
-
512,
|
| 110 |
-
768,
|
| 111 |
-
]
|
| 112 |
-
],
|
| 113 |
-
inputs=[
|
| 114 |
-
text2image_model_path,
|
| 115 |
-
text2image_prompt,
|
| 116 |
-
text2image_negative_prompt,
|
| 117 |
-
text2image_guidance_scale,
|
| 118 |
-
text2image_num_inference_step,
|
| 119 |
-
text2image_height,
|
| 120 |
-
text2image_width,
|
| 121 |
-
],
|
| 122 |
-
outputs=[output_image],
|
| 123 |
-
cache_examples=False,
|
| 124 |
-
fn=stable_diffusion_text2img,
|
| 125 |
-
label="Text2Image Example",
|
| 126 |
-
)
|
| 127 |
-
text2image_predict.click(
|
| 128 |
-
fn=stable_diffusion_text2img,
|
| 129 |
-
inputs=[
|
| 130 |
-
text2image_model_path,
|
| 131 |
-
text2image_prompt,
|
| 132 |
-
text2image_negative_prompt,
|
| 133 |
-
text2image_guidance_scale,
|
| 134 |
-
text2image_num_inference_step,
|
| 135 |
-
text2image_height,
|
| 136 |
-
text2image_width,
|
| 137 |
-
],
|
| 138 |
-
outputs=output_image,
|
| 139 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|