Spaces:
Building
on
A10G
Building
on
A10G
Delete diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_app.py
Browse files
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_app.py
DELETED
@@ -1,206 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from diffusers import (
|
6 |
-
ControlNetModel,
|
7 |
-
StableDiffusionControlNetPipeline,
|
8 |
-
)
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
from diffusion_webui.utils.model_list import (
|
12 |
-
controlnet_canny_model_list,
|
13 |
-
stable_model_list,
|
14 |
-
)
|
15 |
-
from diffusion_webui.utils.scheduler_list import (
|
16 |
-
SCHEDULER_LIST,
|
17 |
-
get_scheduler_list,
|
18 |
-
)
|
19 |
-
|
20 |
-
# https://github.com/mikonvergence/ControlNetInpaint
|
21 |
-
|
22 |
-
class StableDiffusionControlInpaintNetCannyGenerator:
|
23 |
-
def __init__(self):
|
24 |
-
self.pipe = None
|
25 |
-
|
26 |
-
def controlnet_canny_inpaint(
|
27 |
-
self,
|
28 |
-
image_path: str,
|
29 |
-
):
|
30 |
-
image = image_path["image"].convert("RGB").resize((512, 512))
|
31 |
-
image = np.array(image)
|
32 |
-
|
33 |
-
image = cv2.Canny(image, 100, 200)
|
34 |
-
image = image[:, :, None]
|
35 |
-
image = np.concatenate([image, image, image], axis=2)
|
36 |
-
image = Image.fromarray(image)
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
41 |
-
if self.pipe is None:
|
42 |
-
controlnet = ControlNetModel.from_pretrained(
|
43 |
-
controlnet_model_path, torch_dtype=torch.float16
|
44 |
-
)
|
45 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
46 |
-
pretrained_model_name_or_path=stable_model_path,
|
47 |
-
controlnet=controlnet,
|
48 |
-
safety_checker=None,
|
49 |
-
torch_dtype=torch.float16,
|
50 |
-
)
|
51 |
-
|
52 |
-
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
53 |
-
self.pipe.to("cuda")
|
54 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
55 |
-
|
56 |
-
return self.pipe
|
57 |
-
|
58 |
-
def generate_image(
|
59 |
-
self,
|
60 |
-
image_path: str,
|
61 |
-
stable_model_path: str,
|
62 |
-
controlnet_model_path: str,
|
63 |
-
prompt: str,
|
64 |
-
negative_prompt: str,
|
65 |
-
num_images_per_prompt: int,
|
66 |
-
guidance_scale: int,
|
67 |
-
num_inference_step: int,
|
68 |
-
scheduler: str,
|
69 |
-
seed_generator: int,
|
70 |
-
):
|
71 |
-
|
72 |
-
image = self.controlnet_canny_inpaint(image_path=image_path)
|
73 |
-
|
74 |
-
pipe = self.load_model(
|
75 |
-
stable_model_path=stable_model_path,
|
76 |
-
controlnet_model_path=controlnet_model_path,
|
77 |
-
scheduler=scheduler,
|
78 |
-
)
|
79 |
-
|
80 |
-
if seed_generator == 0:
|
81 |
-
random_seed = torch.randint(0, 1000000, (1,))
|
82 |
-
generator = torch.manual_seed(random_seed)
|
83 |
-
else:
|
84 |
-
generator = torch.manual_seed(seed_generator)
|
85 |
-
|
86 |
-
output = pipe(
|
87 |
-
prompt=prompt,
|
88 |
-
image=image,
|
89 |
-
negative_prompt=negative_prompt,
|
90 |
-
num_images_per_prompt=num_images_per_prompt,
|
91 |
-
num_inference_steps=num_inference_step,
|
92 |
-
guidance_scale=guidance_scale,
|
93 |
-
generator=generator,
|
94 |
-
).images
|
95 |
-
|
96 |
-
return output
|
97 |
-
|
98 |
-
def app():
|
99 |
-
with gr.Blocks():
|
100 |
-
with gr.Row():
|
101 |
-
with gr.Column():
|
102 |
-
controlnet_canny_inpaint_image_file = gr.Image(
|
103 |
-
source="upload",
|
104 |
-
tool="sketch",
|
105 |
-
elem_id="image_upload",
|
106 |
-
type="pil",
|
107 |
-
label="Upload",
|
108 |
-
)
|
109 |
-
|
110 |
-
controlnet_canny_inpaint_prompt = gr.Textbox(
|
111 |
-
lines=1, placeholder="Prompt", show_label=False
|
112 |
-
)
|
113 |
-
|
114 |
-
controlnet_canny_inpaint_negative_prompt = gr.Textbox(
|
115 |
-
lines=1,
|
116 |
-
show_label=False,
|
117 |
-
placeholder="Negative Prompt",
|
118 |
-
)
|
119 |
-
with gr.Row():
|
120 |
-
with gr.Column():
|
121 |
-
controlnet_canny_inpaint_stable_model_id = (
|
122 |
-
gr.Dropdown(
|
123 |
-
choices=stable_model_list,
|
124 |
-
value=stable_model_list[0],
|
125 |
-
label="Stable Model Id",
|
126 |
-
)
|
127 |
-
)
|
128 |
-
|
129 |
-
controlnet_canny_inpaint_guidance_scale = gr.Slider(
|
130 |
-
minimum=0.1,
|
131 |
-
maximum=15,
|
132 |
-
step=0.1,
|
133 |
-
value=7.5,
|
134 |
-
label="Guidance Scale",
|
135 |
-
)
|
136 |
-
|
137 |
-
controlnet_canny_inpaint_num_inference_step = (
|
138 |
-
gr.Slider(
|
139 |
-
minimum=1,
|
140 |
-
maximum=100,
|
141 |
-
step=1,
|
142 |
-
value=50,
|
143 |
-
label="Num Inference Step",
|
144 |
-
)
|
145 |
-
)
|
146 |
-
controlnet_canny_inpaint_num_images_per_prompt = (
|
147 |
-
gr.Slider(
|
148 |
-
minimum=1,
|
149 |
-
maximum=10,
|
150 |
-
step=1,
|
151 |
-
value=1,
|
152 |
-
label="Number Of Images",
|
153 |
-
)
|
154 |
-
)
|
155 |
-
with gr.Row():
|
156 |
-
with gr.Column():
|
157 |
-
controlnet_canny_inpaint_model_id = gr.Dropdown(
|
158 |
-
choices=controlnet_canny_model_list,
|
159 |
-
value=controlnet_canny_model_list[0],
|
160 |
-
label="Controlnet Model Id",
|
161 |
-
)
|
162 |
-
controlnet_canny_inpaint_scheduler = (
|
163 |
-
gr.Dropdown(
|
164 |
-
choices=SCHEDULER_LIST,
|
165 |
-
value=SCHEDULER_LIST[0],
|
166 |
-
label="Scheduler",
|
167 |
-
)
|
168 |
-
)
|
169 |
-
|
170 |
-
controlnet_canny_inpaint_seed_generator = (
|
171 |
-
gr.Slider(
|
172 |
-
minimum=0,
|
173 |
-
maximum=1000000,
|
174 |
-
step=1,
|
175 |
-
value=0,
|
176 |
-
label="Seed Generator",
|
177 |
-
)
|
178 |
-
)
|
179 |
-
|
180 |
-
controlnet_canny_inpaint_predict = gr.Button(
|
181 |
-
value="Generator"
|
182 |
-
)
|
183 |
-
|
184 |
-
with gr.Column():
|
185 |
-
output_image = gr.Gallery(
|
186 |
-
label="Generated images",
|
187 |
-
show_label=False,
|
188 |
-
elem_id="gallery",
|
189 |
-
).style(grid=(1, 2))
|
190 |
-
|
191 |
-
controlnet_canny_inpaint_predict.click(
|
192 |
-
fn=StableDiffusionControlInpaintNetCannyGenerator().generate_image,
|
193 |
-
inputs=[
|
194 |
-
controlnet_canny_inpaint_image_file,
|
195 |
-
controlnet_canny_inpaint_stable_model_id,
|
196 |
-
controlnet_canny_inpaint_model_id,
|
197 |
-
controlnet_canny_inpaint_prompt,
|
198 |
-
controlnet_canny_inpaint_negative_prompt,
|
199 |
-
controlnet_canny_inpaint_num_images_per_prompt,
|
200 |
-
controlnet_canny_inpaint_guidance_scale,
|
201 |
-
controlnet_canny_inpaint_num_inference_step,
|
202 |
-
controlnet_canny_inpaint_scheduler,
|
203 |
-
controlnet_canny_inpaint_seed_generator,
|
204 |
-
],
|
205 |
-
outputs=[output_image],
|
206 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|