Spaces:
Building
on
A10G
Building
on
A10G
from diffusers import DiffusionPipeline, DDIMScheduler | |
from PIL import Image | |
import imageio | |
import torch | |
import gradio as gr | |
stable_model_list = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2", | |
"stabilityai/stable-diffusion-2-base", | |
"stabilityai/stable-diffusion-2-1", | |
"stabilityai/stable-diffusion-2-1-base" | |
] | |
stable_inpiant_model_list = [ | |
"stabilityai/stable-diffusion-2-inpainting", | |
"runwayml/stable-diffusion-inpainting" | |
] | |
stable_prompt_list = [ | |
"a photo of a man.", | |
"a photo of a girl." | |
] | |
stable_negative_prompt_list = [ | |
"bad, ugly", | |
"deformed" | |
] | |
def resize(height,img): | |
baseheight = height | |
img = Image.open(img) | |
hpercent = (baseheight/float(img.size[1])) | |
wsize = int((float(img.size[0])*float(hpercent))) | |
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) | |
return img | |
def img_preprocces(source_img, prompt, negative_prompt): | |
imageio.imwrite("data.png", source_img["image"]) | |
imageio.imwrite("data_mask.png", source_img["mask"]) | |
src = resize(512, "data.png") | |
src.save("src.png") | |
mask = resize(512, "data_mask.png") | |
mask.save("mask.png") | |
return src, mask | |
def stable_diffusion_inpaint( | |
image_path:str, | |
model_path:str, | |
prompt:str, | |
negative_prompt:str, | |
guidance_scale:int, | |
num_inference_step:int, | |
): | |
image, mask_image = img_preprocces(image_path, prompt, negative_prompt) | |
pipe = DiffusionPipeline.from_pretrained( | |
model_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe.to('cuda') | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt = prompt, | |
image = image, | |
mask_image=mask_image, | |
negative_prompt = negative_prompt, | |
num_inference_steps = num_inference_step, | |
guidance_scale = guidance_scale, | |
).images | |
return output[0] | |
def stable_diffusion_inpaint_app(): | |
with gr.Tab('Inpaint'): | |
inpaint_image_file = gr.Image( | |
source="upload", | |
type="numpy", | |
tool="sketch", | |
elem_id="source_container" | |
) | |
inpaint_model_id = gr.Dropdown( | |
choices=stable_inpiant_model_list, | |
value=stable_inpiant_model_list[0], | |
label='Inpaint Model Id' | |
) | |
inpaint_prompt = gr.Textbox( | |
lines=1, | |
value=stable_prompt_list[0], | |
label='Prompt' | |
) | |
inpaint_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label='Negative Prompt' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
inpaint_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label='Guidance Scale' | |
) | |
inpaint_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label='Num Inference Step' | |
) | |
inpaint_predict = gr.Button(value='Generator') | |
variables = { | |
"image_path": inpaint_image_file, | |
"model_path": inpaint_model_id, | |
"prompt": inpaint_prompt, | |
"negative_prompt": inpaint_negative_prompt, | |
"guidance_scale": inpaint_guidance_scale, | |
"num_inference_step": inpaint_num_inference_step, | |
"predict": inpaint_predict | |
} | |
return variables | |