Spaces:
Building
on
A10G
Building
on
A10G
File size: 3,859 Bytes
3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 3911a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import torch
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline
from PIL import Image
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
]
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
data_list = [
"data/test.png",
]
def stable_diffusion_img2img(
image_path: str,
model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
):
image = Image.open(image_path)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float16
)
pipe.to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
output = pipe(
prompt=prompt,
image=image,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
).images
return output[0]
def stable_diffusion_img2img_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image2image2_image_file = gr.Image(
type="filepath", label="Image"
)
image2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Image-Image Model Id",
)
image2image_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
image2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
image2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
image2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
image2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Image(label="Output")
gr.Examples(
fn=stable_diffusion_img2img,
examples=[
[
data_list[0],
stable_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
],
],
inputs=[
image2image2_image_file,
image2image_model_path,
image2image_prompt,
image2image_negative_prompt,
image2image_guidance_scale,
image2image_num_inference_step,
],
outputs=[output_image],
cache_examples=False,
label="Image-Image Generator",
)
image2image_predict.click(
fn=stable_diffusion_img2img,
inputs=[
image2image2_image_file,
image2image_model_path,
image2image_prompt,
image2image_negative_prompt,
image2image_guidance_scale,
image2image_num_inference_step,
],
outputs=[output_image],
)
|