from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler | |
import torch | |
def dummy(images, **kwargs): | |
return images, False | |
async def Gimager(prompt): | |
model_id = "SG161222/Realistic_Vision_V1.4" | |
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = await StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
pipe.safety_checker = dummy | |
image = await pipe(prompt).images[0] | |
return image | |