File size: 1,487 Bytes
b8a907e e5bc3c5 67780da 24d606f b8a907e d2978b4 67780da f17ee59 fd60e55 f17ee59 b8a907e e0b6fc3 61d0503 ff2c49e 61d0503 6e99035 bcf8e55 f17ee59 454db78 67780da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import asyncio
from Linlada import Chatbot, ConversationStyle
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
allow_credentials=True,
)
async def generate(prompt):
bot = await Chatbot.create()
result = await bot.ask(prompt=prompt, conversation_style=ConversationStyle.precise)
return result
def dummy(images, **kwargs):
return images, False
async def generate_image(prompt):
model_id = "runwayml/stable-diffusion-v1-5"
pipe = await StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.safety_checker = dummy
image = await pipe(prompt).images[0]
return image
@app.get("/")
def read_root():
return "Hello, I'm Linlada"
@app.get("/test/{hello}")
def hi(hello: str):
return {"text": hello}
@app.get("/image/{image}")
def img(image: str):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(generate_image(image))
loop.close()
return result
@app.get('/linlada/{prompt}')
def generate_image_route(prompt: str):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(generate(prompt))
loop.close()
return result |