File size: 1,487 Bytes
b8a907e
e5bc3c5
67780da
 
24d606f
 
b8a907e
 
 
d2978b4
 
 
 
 
 
 
 
67780da
 
 
 
 
f17ee59
 
 
 
fd60e55
 
f17ee59
 
 
 
 
b8a907e
 
e0b6fc3
61d0503
ff2c49e
61d0503
6e99035
bcf8e55
 
 
f17ee59
 
 
 
 
454db78
67780da
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import asyncio
from Linlada import Chatbot, ConversationStyle
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
    allow_credentials=True,
)

async def generate(prompt):
    bot = await Chatbot.create()
    result = await bot.ask(prompt=prompt, conversation_style=ConversationStyle.precise)
    return result

def dummy(images, **kwargs):
    return images, False

async def generate_image(prompt):
    model_id = "runwayml/stable-diffusion-v1-5"
    pipe = await StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    pipe.safety_checker = dummy
    image = await pipe(prompt).images[0]
    return image

@app.get("/")
def read_root():
    return "Hello, I'm Linlada"

@app.get("/test/{hello}")
def hi(hello: str):
    return {"text": hello}

@app.get("/image/{image}")
def img(image: str):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(generate_image(image))
    loop.close()
    return result
    
@app.get('/linlada/{prompt}')
def generate_image_route(prompt: str):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(generate(prompt))
    loop.close()
    return result