ka1kuk commited on
Commit
b7fc46d
·
verified ·
1 Parent(s): 957ed2d

Update apis/chat_api.py

Browse files
Files changed (1) hide show
  1. apis/chat_api.py +12 -12
apis/chat_api.py CHANGED
@@ -116,17 +116,6 @@ class ChatAPIApp:
116
  model_name: str = Field(..., example="bert-base-uncased")
117
  api_key: str = Field(..., example="your_hf_api_key_here")
118
 
119
- async def chat_embedding(texts, model_name, api_key):
120
- api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
121
- headers = {"Authorization": f"Bearer {api_key}"}
122
- response = requests.post(api_url, headers=headers, json={"inputs": texts})
123
- result = response.json()
124
- if isinstance(result, list) and len(result) > 0 and isinstance(result[0], list):
125
- return result
126
- elif "error" in result:
127
- raise RuntimeError("The model is currently loading, please re-run the query.")
128
- else:
129
- raise RuntimeError("Unexpected response format.")
130
 
131
  class ChatCompletionsPostItem(BaseModel):
132
  model: str = Field(
@@ -186,7 +175,18 @@ class ChatAPIApp:
186
  data_response = streamer.chat_return_dict(stream_response)
187
  return data_response
188
 
189
-
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  async def embedding(request: QueryRequest):
192
  try:
 
116
  model_name: str = Field(..., example="bert-base-uncased")
117
  api_key: str = Field(..., example="your_hf_api_key_here")
118
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
  class ChatCompletionsPostItem(BaseModel):
121
  model: str = Field(
 
175
  data_response = streamer.chat_return_dict(stream_response)
176
  return data_response
177
 
178
+ async def chat_embedding(texts, model_name, api_key):
179
+ api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
180
+ headers = {"Authorization": f"Bearer {api_key}"}
181
+ response = requests.post(api_url, headers=headers, json={"inputs": texts})
182
+ result = response.json()
183
+ if isinstance(result, list) and len(result) > 0 and isinstance(result[0], list):
184
+ return result
185
+ elif "error" in result:
186
+ raise RuntimeError("The model is currently loading, please re-run the query.")
187
+ else:
188
+ raise RuntimeError("Unexpected response format.")
189
+
190
 
191
  async def embedding(request: QueryRequest):
192
  try: