Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| # | |
| # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
| # | |
| # See LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # References: | |
| # https://gradio.app/docs/#dropdown | |
| import base64 | |
| import logging | |
| import os | |
| import tempfile | |
| import time | |
| from datetime import datetime | |
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| import urllib.request | |
| from examples import examples | |
| from model import decode, get_pretrained_model, language_to_models, sample_rate | |
| languages = list(language_to_models.keys()) | |
| def convert_to_wav(in_filename: str) -> str: | |
| """Convert the input audio file to a wave file""" | |
| out_filename = in_filename + ".wav" | |
| logging.info(f"Converting '{in_filename}' to '{out_filename}'") | |
| _ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'") | |
| _ = os.system( | |
| f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 '{out_filename}.flac'" | |
| ) | |
| with open(out_filename + ".flac", "rb") as f: | |
| s = "\n" + out_filename + "\n" | |
| s += base64.b64encode(f.read()).decode() | |
| logging.info(s) | |
| return out_filename | |
| def build_html_output(s: str, style: str = "result_item_success"): | |
| return f""" | |
| <div class='result'> | |
| <div class='result_item {style}'> | |
| {s} | |
| </div> | |
| </div> | |
| """ | |
| def process_url( | |
| language: str, | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| url: str, | |
| ): | |
| logging.info(f"Processing URL: {url}") | |
| with tempfile.NamedTemporaryFile() as f: | |
| try: | |
| urllib.request.urlretrieve(url, f.name) | |
| return process( | |
| in_filename=f.name, | |
| language=language, | |
| repo_id=repo_id, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| except Exception as e: | |
| logging.info(str(e)) | |
| return "", build_html_output(str(e), "result_item_error") | |
| def process_uploaded_file( | |
| language: str, | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| in_filename: str, | |
| ): | |
| if in_filename is None or in_filename == "": | |
| return "", build_html_output( | |
| "Please first upload a file and then click " | |
| 'the button "submit for recognition"', | |
| "result_item_error", | |
| ) | |
| logging.info(f"Processing uploaded file: {in_filename}") | |
| try: | |
| return process( | |
| in_filename=in_filename, | |
| language=language, | |
| repo_id=repo_id, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| except Exception as e: | |
| logging.info(str(e)) | |
| return "", build_html_output(str(e), "result_item_error") | |
| def process_microphone( | |
| language: str, | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| in_filename: str, | |
| ): | |
| if in_filename is None or in_filename == "": | |
| return "", build_html_output( | |
| "Please first click 'Record from microphone', speak, " | |
| "click 'Stop recording', and then " | |
| "click the button 'submit for recognition'", | |
| "result_item_error", | |
| ) | |
| logging.info(f"Processing microphone: {in_filename}") | |
| try: | |
| return process( | |
| in_filename=in_filename, | |
| language=language, | |
| repo_id=repo_id, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| except Exception as e: | |
| logging.info(str(e)) | |
| return "", build_html_output(str(e), "result_item_error") | |
| def process( | |
| language: str, | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| in_filename: str, | |
| ): | |
| logging.info(f"language: {language}") | |
| logging.info(f"repo_id: {repo_id}") | |
| logging.info(f"decoding_method: {decoding_method}") | |
| logging.info(f"num_active_paths: {num_active_paths}") | |
| logging.info(f"in_filename: {in_filename}") | |
| filename = convert_to_wav(in_filename) | |
| now = datetime.now() | |
| date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
| logging.info(f"Started at {date_time}") | |
| start = time.time() | |
| recognizer = get_pretrained_model( | |
| repo_id, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| text = decode(recognizer, filename) | |
| date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
| end = time.time() | |
| metadata = torchaudio.info(filename) | |
| duration = metadata.num_frames / sample_rate | |
| rtf = (end - start) / duration | |
| logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
| info = f""" | |
| Wave duration : {duration: .3f} s <br/> | |
| Processing time: {end - start: .3f} s <br/> | |
| RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
| """ | |
| if rtf > 1: | |
| info += ( | |
| "<br/>We are loading the model for the first run. " | |
| "Please run again to measure the real RTF.<br/>" | |
| ) | |
| logging.info(info) | |
| logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}") | |
| return text, build_html_output(info) | |
| title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
| description = """ | |
| This space shows how to do automatic speech recognition with Next-gen Kaldi. | |
| Please visit | |
| <https://huggingface.co/spaces/k2-fsa/streaming-automatic-speech-recognition> | |
| for streaming speech recognition with **Next-gen Kaldi**. | |
| It is running on CPU within a docker container provided by Hugging Face. | |
| See more information by visiting the following links: | |
| - <https://github.com/k2-fsa/icefall> | |
| - <https://github.com/k2-fsa/sherpa> | |
| - <https://github.com/k2-fsa/k2> | |
| - <https://github.com/lhotse-speech/lhotse> | |
| If you want to deploy it locally, please see | |
| <https://k2-fsa.github.io/sherpa/> | |
| """ | |
| # css style is copied from | |
| # https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
| css = """ | |
| .result {display:flex;flex-direction:column} | |
| .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
| .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
| .result_item_error {background-color:#ff7070;color:white;align-self:start} | |
| """ | |
| def update_model_dropdown(language: str): | |
| if language in language_to_models: | |
| choices = language_to_models[language] | |
| return gr.Dropdown.update(choices=choices, value=choices[0]) | |
| raise ValueError(f"Unsupported language: {language}") | |
| demo = gr.Blocks(css=css) | |
| with demo: | |
| gr.Markdown(title) | |
| language_choices = list(language_to_models.keys()) | |
| language_radio = gr.Radio( | |
| label="Language", | |
| choices=language_choices, | |
| value=language_choices[0], | |
| ) | |
| model_dropdown = gr.Dropdown( | |
| choices=language_to_models[language_choices[0]], | |
| label="Select a model", | |
| value=language_to_models[language_choices[0]][0], | |
| ) | |
| language_radio.change( | |
| update_model_dropdown, | |
| inputs=language_radio, | |
| outputs=model_dropdown, | |
| ) | |
| decoding_method_radio = gr.Radio( | |
| label="Decoding method", | |
| choices=["greedy_search", "modified_beam_search"], | |
| value="greedy_search", | |
| ) | |
| num_active_paths_slider = gr.Slider( | |
| minimum=1, | |
| value=4, | |
| step=1, | |
| label="Number of active paths for modified_beam_search", | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("Upload from disk"): | |
| uploaded_file = gr.Audio( | |
| source="upload", # Choose between "microphone", "upload" | |
| type="filepath", | |
| optional=False, | |
| label="Upload from disk", | |
| ) | |
| upload_button = gr.Button("Submit for recognition") | |
| uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
| uploaded_html_info = gr.HTML(label="Info") | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[ | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| uploaded_file, | |
| ], | |
| outputs=[uploaded_output, uploaded_html_info], | |
| fn=process_uploaded_file, | |
| ) | |
| with gr.TabItem("Record from microphone"): | |
| microphone = gr.Audio( | |
| source="microphone", # Choose between "microphone", "upload" | |
| type="filepath", | |
| optional=False, | |
| label="Record from microphone", | |
| ) | |
| record_button = gr.Button("Submit for recognition") | |
| recorded_output = gr.Textbox(label="Recognized speech from recordings") | |
| recorded_html_info = gr.HTML(label="Info") | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[ | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| microphone, | |
| ], | |
| outputs=[recorded_output, recorded_html_info], | |
| fn=process_microphone, | |
| ) | |
| with gr.TabItem("From URL"): | |
| url_textbox = gr.Textbox( | |
| max_lines=1, | |
| placeholder="URL to an audio file", | |
| label="URL", | |
| interactive=True, | |
| ) | |
| url_button = gr.Button("Submit for recognition") | |
| url_output = gr.Textbox(label="Recognized speech from URL") | |
| url_html_info = gr.HTML(label="Info") | |
| upload_button.click( | |
| process_uploaded_file, | |
| inputs=[ | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| uploaded_file, | |
| ], | |
| outputs=[uploaded_output, uploaded_html_info], | |
| ) | |
| record_button.click( | |
| process_microphone, | |
| inputs=[ | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| microphone, | |
| ], | |
| outputs=[recorded_output, recorded_html_info], | |
| ) | |
| url_button.click( | |
| process_url, | |
| inputs=[ | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| url_textbox, | |
| ], | |
| outputs=[url_output, url_html_info], | |
| ) | |
| gr.Markdown(description) | |
| torch.set_num_threads(1) | |
| torch.set_num_interop_threads(1) | |
| torch._C._jit_set_profiling_executor(False) | |
| torch._C._jit_set_profiling_mode(False) | |
| torch._C._set_graph_executor_optimize(False) | |
| if __name__ == "__main__": | |
| formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
| logging.basicConfig(format=formatter, level=logging.INFO) | |
| demo.launch() | |