File size: 8,844 Bytes
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f27666
baa2015
6f27666
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import re
import json
import base64
import requests
import torch
import nest_asyncio
from fastapi import HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, models
import gradio as gr


# Apply nest_asyncio to allow async operations in the notebook/Spaces
nest_asyncio.apply()

import os

HF_TOKEN = os.environ.get("HF_TOKEN")
GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN")


############################################
# GitHub API Functions
############################################

def extract_repo_info(github_url: str):
    pattern = r"github\.com/([^/]+)/([^/]+)"
    match = re.search(pattern, github_url)
    if match:
        owner = match.group(1)
        repo = match.group(2).replace('.git', '')
        return owner, repo
    else:
        raise ValueError("Invalid GitHub URL provided.")

def get_repo_metadata(owner: str, repo: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    repo_url = f"https://api.github.com/repos/{owner}/{repo}"
    response = requests.get(repo_url, headers=headers)
    return response.json()

def get_repo_tree(owner: str, repo: str, branch: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    tree_url = f"https://api.github.com/repos/{owner}/{repo}/git/trees/{branch}?recursive=1"
    response = requests.get(tree_url, headers=headers)
    data = response.json()
    print("Repo Tree Data:", json.dumps(data, indent=2))
    return data

def get_file_content(owner: str, repo: str, file_path: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    content_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{file_path}"
    response = requests.get(content_url, headers=headers)
    data = response.json()
    if 'content' in data:
        return base64.b64decode(data['content']).decode('utf-8')
    else:
        return None

############################################
# Embedding Functions
############################################

def preprocess_text(text: str) -> str:
    cleaned_text = text.strip()
    cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
    return cleaned_text

def load_embedding_model(model_name: str = 'huggingface/CodeBERTa-small-v1') -> SentenceTransformer:
    transformer_model = models.Transformer(model_name)
    pooling_model = models.Pooling(transformer_model.get_word_embedding_dimension(),
                                   pooling_mode_mean_tokens=True)
    model = SentenceTransformer(modules=[transformer_model, pooling_model])
    return model

def generate_embedding(text: str, model_name: str = 'huggingface/CodeBERTa-small-v1') -> list:
    processed_text = preprocess_text(text)
    model = load_embedding_model(model_name)
    embedding = model.encode(processed_text)
    return embedding

############################################
# LLM Integration Functions
############################################

def is_detailed_query(query: str) -> bool:
    keywords = ["detail", "detailed", "thorough", "in depth", "comprehensive", "extensive"]
    return any(keyword in query.lower() for keyword in keywords)

def generate_prompt(query: str, context_snippets: list) -> str:
    context = "\n\n".join(context_snippets)
    if is_detailed_query(query):
        instruction = "Provide an extremely detailed and thorough explanation of at least 500 words."
    else:
        instruction = "Answer concisely."
    
    prompt = (
        f"Below is some context from a GitHub repository:\n\n"
        f"{context}\n\n"
        f"Based on the above, {instruction}\n{query}\n"
        f"Answer:"
    )
    return prompt

def get_llm_response(prompt: str, model_name: str = "meta-llama/Llama-2-7b-chat-hf", max_new_tokens: int = None) -> str:
    if max_new_tokens is None:
        max_new_tokens = 1024 if is_detailed_query(prompt) else 256

    torch.cuda.empty_cache()
    
    # Load tokenizer and model with authentication using the 'token' parameter.
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map="auto",
        use_safetensors=False,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        token=HF_TOKEN
    )
    
    text_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
    outputs = text_gen(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7)
    full_response = outputs[0]['generated_text']
    
    marker = "Answer:"
    if marker in full_response:
        answer = full_response.split(marker, 1)[1].strip()
    else:
        answer = full_response.strip()
    
    return answer

############################################
# Gradio Interface Functions
############################################

def load_repo_contents(github_url: str):
    try:
        owner, repo = extract_repo_info(github_url)
    except Exception as e:
        return f"Error: {str(e)}"
    repo_data = get_repo_metadata(owner, repo)
    default_branch = repo_data.get("default_branch", "main")
    tree_data = get_repo_tree(owner, repo, default_branch)
    if "tree" not in tree_data:
        return "Error: Could not fetch repository tree."
    file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"]
    return file_list

def get_file_content_for_choice(github_url: str, file_choice: int):
    try:
        owner, repo = extract_repo_info(github_url)
    except Exception as e:
        return str(e)
    repo_data = get_repo_metadata(owner, repo)
    default_branch = repo_data.get("default_branch", "main")
    tree_data = get_repo_tree(owner, repo, default_branch)
    if "tree" not in tree_data:
        return "Error: Could not fetch repository tree."
    file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"]
    if file_choice < 1 or file_choice > len(file_list):
        return "Error: Invalid file choice."
    selected_file = file_list[file_choice - 1]
    content = get_file_content(owner, repo, selected_file)
    return content, selected_file

def chat_with_file(github_url: str, file_choice: int, user_query: str):
    result = get_file_content_for_choice(github_url, file_choice)
    if isinstance(result, str):
        return result  # Error message
    file_content, selected_file = result
    preprocessed = preprocess_text(file_content)
    context_snippet = preprocessed[:1000]  # use first 1000 characters as context
    prompt = generate_prompt(user_query, [context_snippet])
    llm_response = get_llm_response(prompt)
    return f"File: {selected_file}\n\nLLM Response:\n{llm_response}"

############################################
# Gradio Interface Setup
############################################

with gr.Blocks() as demo:
    gr.Markdown("# RepoChat - Chat with Repository Files")
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Repository Information")
            github_url_input = gr.Textbox(label="GitHub Repository URL", placeholder="https://github.com/username/repository")
            load_repo_btn = gr.Button("Load Repository Contents")
            file_dropdown = gr.Dropdown(label="Select a File", interactive=True)
            repo_content_output = gr.Textbox(label="File Content", interactive=False, lines=10)
        with gr.Column(scale=2):
            gr.Markdown("### Chat Interface")
            chat_query_input = gr.Textbox(label="Your Query", placeholder="Type your query here")
            chat_output = gr.Textbox(label="Chatbot Response", interactive=False, lines=10)
            chat_btn = gr.Button("Send Query")
    
    # When clicking "Load Repository Contents", update file dropdown
    def update_file_dropdown(github_url):
        files = load_repo_contents(github_url)
        return files
    
    load_repo_btn.click(fn=update_file_dropdown, inputs=[github_url_input], outputs=[file_dropdown])
    
    # When file selection changes, update file content display
    def update_repo_content(github_url, file_choice):
        if not file_choice:
            return "No file selected."
        try:
            file_index = int(file_choice)
        except:
            file_index = 1
        content, _ = get_file_content_for_choice(github_url, file_index)
        return content
    
    file_dropdown.change(fn=update_repo_content, inputs=[github_url_input, file_dropdown], outputs=[repo_content_output])
    
    # When sending a chat query, process it
    def process_chat(github_url, file_choice, chat_query):
        return chat_with_file(github_url, int(file_choice), chat_query)
    
    chat_btn.click(fn=process_chat, inputs=[github_url_input, file_dropdown, chat_query_input], outputs=[chat_output])
    
demo.launch()