Spaces:
Runtime error
Runtime error
First version of task 1 demo
Browse filesUses 'random' token classification head on top of bert model.
- app.py +52 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
from datasets import Dataset
|
| 5 |
+
from transformers import AutoTokenizer, BertForTokenClassification
|
| 6 |
+
|
| 7 |
+
from ocrpostcorrection.icdar_data import generate_sentences, process_input_ocr
|
| 8 |
+
from ocrpostcorrection.token_classification import tokenize_and_align_labels
|
| 9 |
+
from ocrpostcorrection.utils import predictions_to_labels, predictions2entity_output
|
| 10 |
+
|
| 11 |
+
model_name = 'bert-base-multilingual-cased'
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
+
model = BertForTokenClassification.from_pretrained(model_name)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_datasets(text_obj, key, size=150, step=150):
|
| 18 |
+
data = {key: text_obj}
|
| 19 |
+
md = pd.DataFrame({'language': ['?'],
|
| 20 |
+
'file_name': ['ocr_input'],
|
| 21 |
+
'score': [text_obj.score],
|
| 22 |
+
'num_tokens': [len(text_obj.tokens)],
|
| 23 |
+
'num_input_tokens': [len(text_obj.input_tokens)]})
|
| 24 |
+
|
| 25 |
+
df = generate_sentences(md, data, size=size, step=step)
|
| 26 |
+
dataset = Dataset.from_pandas(df)
|
| 27 |
+
tokenized = tokenize_and_align_labels(tokenizer, return_tensors='pt')(dataset)
|
| 28 |
+
del tokenized['labels']
|
| 29 |
+
return data, dataset, tokenized
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def tag(text):
|
| 33 |
+
key = 'ocr_input'
|
| 34 |
+
text_obj = process_input_ocr(text)
|
| 35 |
+
data, dataset, tokenized = get_datasets(text_obj, key=key)
|
| 36 |
+
pred = model(**tokenized)
|
| 37 |
+
predictions = predictions_to_labels(pred.logits.detach().numpy())
|
| 38 |
+
|
| 39 |
+
outputs = predictions2entity_output(dataset, predictions, tokenizer, data)
|
| 40 |
+
output = outputs[key]
|
| 41 |
+
|
| 42 |
+
return {"text": text, "entities": output}
|
| 43 |
+
|
| 44 |
+
examples = ['This is a cxample...']
|
| 45 |
+
|
| 46 |
+
demo = gr.Interface(tag,
|
| 47 |
+
gr.Textbox(placeholder="Enter sentence here..."),
|
| 48 |
+
gr.HighlightedText(),
|
| 49 |
+
examples=examples,
|
| 50 |
+
allow_flagging='never')
|
| 51 |
+
|
| 52 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
git+https://github.com/jvdzwaan/ocrpostcorrection.git#egg=ocrpostcorrection
|
| 3 |
+
pandas
|
| 4 |
+
transformers
|