j-tobias
added backend
752ce9b
raw
history blame
535 Bytes
from dataset import Dataset
from model import Models
def data(dataset):
for i, item in enumerate(dataset):
yield {**item["audio"], "reference": item["norm_text"]}
def streamed_infernce(dataset, pipeline):
# placeholders for predictions and references
predictions = []
references = []
# run streamed inference
for out in pipeline(data(dataset), batch_size=16):
predictions.append(pipeline(out["text"]))
references.append(out["reference"][0])
return predictions, references