File size: 6,827 Bytes
09b2769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
import plotly.graph_objs as go
from datasets import load_dataset
from datasets import Audio
from transformers import pipeline
import evaluate
import librosa
import numpy as np

wer_metric = evaluate.load("wer")

def run(data_subset:str, model_1:str, model_2:str, own_audio, own_transcription:str):

    if data_subset is None:
        raise ValueError("No Dataset selected")
    if model_1 is None:
        raise ValueError("No Model 1 selected")
    if model_2 is None:
        raise ValueError("No Model 2 selected")

    if data_subset == "Common Voice":
        dataset, text_column = load_Common_Voice()
    elif data_subset == "VoxPopuli":
        dataset, text_column = load_Vox_Populi()
    elif data_subset == "OWN Recoding/Sample":
        sr, audio = own_audio
        audio = audio.astype(np.float32) / 32768.0
        print("AUDIO: ", type(audio), audio)
        audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
    else:
        # if data_subset is None then still load load_Common_Voice
        dataset, text_column = load_Common_Voice()
    print("Dataset Loaded")
    
    # check if models are the same
    model1, processor1 = load_model(model_1)
    model2, processor2 = load_model(model_2)
    print("Models Loaded")

    if data_subset == "OWN Recoding/Sample":
        sample = {"audio":{"array":audio,"sampling_rate":16000}}
        transcription1 = model_compute(model1, processor1, sample, model_1)
        transcription2 = model_compute(model2, processor2, sample, model_2)

        transcriptions1 = [transcription1]
        transcriptions2 = [transcription2]
        references = [own_transcription]

        wer1 = compute_wer(references, transcriptions1)
        wer2 = compute_wer(references, transcriptions2)

        results_md = f"""#### {model_1} 
        - WER Score: {wer1}
           
        #### {model_2} 
        - WER Score: {wer2}"""

        # Create the bar plot
        fig = go.Figure(
            data=[
                go.Bar(x=[f"{model_1}"], y=[wer1]),
                go.Bar(x=[f"{model_2}"], y=[wer2]),
            ]
        )
        # Update the layout for better visualization
        fig.update_layout(
            title="Comparison of Two Models",
            xaxis_title="Models",
            yaxis_title="Value",
            barmode="group",
        )

        yield results_md, fig

    else:
        references = []
        transcriptions1 = []
        transcriptions2 = []
        counter = 0
        for sample in dataset:
            print(counter)
            counter += 1

            references.append(sample[text_column])

            if model_1 == model_2:
                transcription = model_compute(model1, processor1, sample, model_1)

                transcriptions1.append(transcription)
                transcriptions2.append(transcription)
            else:  
                transcriptions1.append(model_compute(model1, processor1, sample, model_1))
                transcriptions2.append(model_compute(model2, processor2, sample, model_2))


            wer1 = compute_wer(references, transcriptions1)
            wer2 = compute_wer(references, transcriptions2)

            results_md = f"""#### {model_1} 
            - WER Score: {wer1}
            
            #### {model_2} 
            - WER Score: {wer2}"""

            # Create the bar plot
            fig = go.Figure(
                data=[
                    go.Bar(x=[f"{model_1}"], y=[wer1]),
                    go.Bar(x=[f"{model_2}"], y=[wer2]),
                ]
            )

            # Update the layout for better visualization
            fig.update_layout(
                title="Comparison of Two Models",
                xaxis_title="Models",
                yaxis_title="Value",
                barmode="group",
            )

            yield results_md, fig

    




# DATASET LOADERS
def load_Common_Voice():
    dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", revision="streaming", split="test", streaming=True, token=True, trust_remote_code=True)
    text_column = "sentence"
    dataset = dataset.take(100)
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    dataset = list(dataset)
    return dataset, text_column

def load_Vox_Populi():
    dataset = dataset = load_dataset("facebook/voxpopuli", "en", split="test", streaming=True, trust_remote_code=True)
    print(next(iter(dataset)))
    text_column = "raw_text"
    dataset = dataset.take(100)
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    dataset = list(dataset)
    return dataset, text_column




# MODEL LOADERS
def load_model(model_id:str):
    if model_id == "openai/whisper-tiny.en":
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
    elif model_id == "facebook/s2t-medium-librispeech-asr":
        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-librispeech-asr")
        processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-librispeech-asr", do_upper_case=True)
    else:
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
    
    return model, processor


# MODEL INFERENCE
def model_compute(model, processor, sample, model_id):

    if model_id == "openai/whisper-tiny.en":
        sample = sample["audio"]
        input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
        predicted_ids = model.generate(input_features)
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        return transcription[0]
    elif model_id == "facebook/s2t-medium-librispeech-asr":
        sample = sample["audio"]
        features = processor(sample["array"], sampling_rate=16000, padding=True, return_tensors="pt")
        input_features = features.input_features
        attention_mask = features.attention_mask
        gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask)
        transcription= processor.batch_decode(gen_tokens, skip_special_tokens=True)[0]
        return transcription[0]

    else:
        return model(sample)

# UTILS
def compute_wer(references, predictions):
    wer = wer_metric.compute(references=references, predictions=predictions)
    wer = round(100 * wer, 2)
    return wer


# print(load_Vox_Populi())
# print(run("Common Voice", "openai/whisper-tiny.en", "openai/whisper-tiny.en", None, None))