import torch from torch import nn from torch_cluster import knn_graph class Dilated(nn.Module): """ Find dilated neighbor from neighbor list """ def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): super(Dilated, self).__init__() self.dilation = dilation self.stochastic = stochastic self.epsilon = epsilon self.k = k def forward(self, edge_index, batch=None): if self.stochastic: if torch.rand(1) < self.epsilon and self.training: num = self.k * self.dilation randnum = torch.randperm(num)[:self.k] edge_index = edge_index.view(2, -1, num) edge_index = edge_index[:, :, randnum] return edge_index.view(2, -1) else: edge_index = edge_index[:, ::self.dilation] else: edge_index = edge_index[:, ::self.dilation] return edge_index class DilatedKnnGraph(nn.Module): """ Find the neighbors' indices based on dilated knn """ def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0, knn='matrix'): super(DilatedKnnGraph, self).__init__() self.dilation = dilation self.stochastic = stochastic self.epsilon = epsilon self.k = k self._dilated = Dilated(k, dilation, stochastic, epsilon) if knn == 'matrix': self.knn = knn_graph_matrix else: self.knn = knn_graph def forward(self, x, batch): edge_index = self.knn(x, self.k * self.dilation, batch) return self._dilated(edge_index, batch) def pairwise_distance(x): """ Compute pairwise distance of a point cloud. Args: x: tensor (batch_size, num_points, num_dims) Returns: pairwise distance: (batch_size, num_points, num_points) """ x_inner = -2*torch.matmul(x, x.transpose(2, 1)) x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True) return x_square + x_inner + x_square.transpose(2, 1) def knn_matrix(x, k=16, batch=None): """Get KNN based on the pairwise distance. Args: pairwise distance: (num_points, num_points) k: int Returns: nearest neighbors: (num_points*k ,1) (num_points, k) """ with torch.no_grad(): if batch is None: batch_size = 1 else: batch_size = batch[-1] + 1 x = x.view(batch_size, -1, x.shape[-1]) neg_adj = -pairwise_distance(x.detach()) _, nn_idx = torch.topk(neg_adj, k=k) del neg_adj n_points = x.shape[1] start_idx = torch.arange(0, n_points*batch_size, n_points).long().view(batch_size, 1, 1) if x.is_cuda: start_idx = start_idx.cuda() nn_idx += start_idx del start_idx if x.is_cuda: torch.cuda.empty_cache() nn_idx = nn_idx.view(1, -1) center_idx = torch.arange(0, n_points*batch_size).repeat(k, 1).transpose(1, 0).contiguous().view(1, -1) if x.is_cuda: center_idx = center_idx.cuda() return nn_idx, center_idx def knn_graph_matrix(x, k=16, batch=None): """Construct edge feature for each point Args: x: (num_points, num_dims) batch: (num_points, ) k: int Returns: edge_index: (2, num_points*k) """ nn_idx, center_idx = knn_matrix(x, k, batch) return torch.cat((nn_idx, center_idx), dim=0)