Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from torch_cluster import knn_graph | |
class Dilated(nn.Module): | |
""" | |
Find dilated neighbor from neighbor list | |
""" | |
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): | |
super(Dilated, self).__init__() | |
self.dilation = dilation | |
self.stochastic = stochastic | |
self.epsilon = epsilon | |
self.k = k | |
def forward(self, edge_index, batch=None): | |
if self.stochastic: | |
if torch.rand(1) < self.epsilon and self.training: | |
num = self.k * self.dilation | |
randnum = torch.randperm(num)[:self.k] | |
edge_index = edge_index.view(2, -1, num) | |
edge_index = edge_index[:, :, randnum] | |
return edge_index.view(2, -1) | |
else: | |
edge_index = edge_index[:, ::self.dilation] | |
else: | |
edge_index = edge_index[:, ::self.dilation] | |
return edge_index | |
class DilatedKnnGraph(nn.Module): | |
""" | |
Find the neighbors' indices based on dilated knn | |
""" | |
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0, knn='matrix'): | |
super(DilatedKnnGraph, self).__init__() | |
self.dilation = dilation | |
self.stochastic = stochastic | |
self.epsilon = epsilon | |
self.k = k | |
self._dilated = Dilated(k, dilation, stochastic, epsilon) | |
if knn == 'matrix': | |
self.knn = knn_graph_matrix | |
else: | |
self.knn = knn_graph | |
def forward(self, x, batch): | |
edge_index = self.knn(x, self.k * self.dilation, batch) | |
return self._dilated(edge_index, batch) | |
def pairwise_distance(x): | |
""" | |
Compute pairwise distance of a point cloud. | |
Args: | |
x: tensor (batch_size, num_points, num_dims) | |
Returns: | |
pairwise distance: (batch_size, num_points, num_points) | |
""" | |
x_inner = -2*torch.matmul(x, x.transpose(2, 1)) | |
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True) | |
return x_square + x_inner + x_square.transpose(2, 1) | |
def knn_matrix(x, k=16, batch=None): | |
"""Get KNN based on the pairwise distance. | |
Args: | |
pairwise distance: (num_points, num_points) | |
k: int | |
Returns: | |
nearest neighbors: (num_points*k ,1) (num_points, k) | |
""" | |
with torch.no_grad(): | |
if batch is None: | |
batch_size = 1 | |
else: | |
batch_size = batch[-1] + 1 | |
x = x.view(batch_size, -1, x.shape[-1]) | |
neg_adj = -pairwise_distance(x.detach()) | |
_, nn_idx = torch.topk(neg_adj, k=k) | |
del neg_adj | |
n_points = x.shape[1] | |
start_idx = torch.arange(0, n_points*batch_size, n_points).long().view(batch_size, 1, 1) | |
if x.is_cuda: | |
start_idx = start_idx.cuda() | |
nn_idx += start_idx | |
del start_idx | |
if x.is_cuda: | |
torch.cuda.empty_cache() | |
nn_idx = nn_idx.view(1, -1) | |
center_idx = torch.arange(0, n_points*batch_size).repeat(k, 1).transpose(1, 0).contiguous().view(1, -1) | |
if x.is_cuda: | |
center_idx = center_idx.cuda() | |
return nn_idx, center_idx | |
def knn_graph_matrix(x, k=16, batch=None): | |
"""Construct edge feature for each point | |
Args: | |
x: (num_points, num_dims) | |
batch: (num_points, ) | |
k: int | |
Returns: | |
edge_index: (2, num_points*k) | |
""" | |
nn_idx, center_idx = knn_matrix(x, k, batch) | |
return torch.cat((nn_idx, center_idx), dim=0) | |