File size: 15,589 Bytes
799e642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
import h5py
import os
import os.path as osp
import shutil
from glob import glob
import torch
from torch_scatter import scatter
from torch_geometric.data import InMemoryDataset, Data, extract_zip
from tqdm import tqdm
import torch_geometric as tg


def intersection(lst1, lst2):
    return list(set(lst1) & set(lst2))


def process_indexes(idx_list):
    idx_dict = {}
    for i, idx in enumerate(idx_list):
        idx_dict[idx] = i

    return [idx_dict[i] for i in sorted(idx_dict.keys())]


def add_zeros(data):
    data.x = torch.zeros(data.num_nodes, dtype=torch.long)
    return data


def extract_node_feature(data, reduce='add'):
    if reduce in ['mean', 'max', 'add']:
        data.x = scatter(data.edge_attr,
                         data.edge_index[0],
                         dim=0,
                         dim_size=data.num_nodes,
                         reduce=reduce)
    else:
        raise Exception('Unknown Aggregation Type')
    return data

# random partition graph
def random_partition_graph(num_nodes, cluster_number=10):
    parts = np.random.randint(cluster_number, size=num_nodes)
    return parts


def generate_sub_graphs(adj, parts, cluster_number=10, batch_size=1):
    # convert sparse tensor to scipy csr
    adj = adj.to_scipy(layout='csr')

    num_batches = cluster_number // batch_size

    sg_nodes = [[] for _ in range(num_batches)]
    sg_edges = [[] for _ in range(num_batches)]

    for cluster in range(num_batches):
        sg_nodes[cluster] = np.where(parts == cluster)[0]
        sg_edges[cluster] = tg.utils.from_scipy_sparse_matrix(adj[sg_nodes[cluster], :][:, sg_nodes[cluster]])[0]

    return sg_nodes, sg_edges

def random_rotate(points):
    theta = np.random.uniform(0, np.pi * 2)
    rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
    rotation_matrix = torch.from_numpy(rotation_matrix).float()
    points[:, 0:2] = torch.matmul(points[:, [0, 1]].transpose(1, 3), rotation_matrix).transpose(1, 3)
    return points


def random_translate(points, mean=0, std=0.02):
    points += torch.randn(points.shape)*std + mean
    return points


def random_points_augmentation(points, rotate=False, translate=False, **kwargs):
    if rotate:
        points = random_rotate(points)
    if translate:
        points = random_translate(points, **kwargs)

    return points


def scale_translate_pointcloud(pointcloud, shift=[-0.2, 0.2], scale=[2. / 3., 3. /2.]):
    """
    for scaling and shifting the point cloud
    :param pointcloud:
    :return:
    """
    B, C, N = pointcloud.shape[0:3]
    scale = scale[0] + torch.rand([B, C, 1, 1])*(scale[1]-scale[0])
    shift = shift[0] + torch.rand([B, C, 1, 1]) * (shift[1]-shift[0])
    translated_pointcloud = torch.mul(pointcloud, scale) + shift
    return translated_pointcloud


class PartNet(InMemoryDataset):
    r"""The PartNet dataset from
    the `"PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding"
    <https://arxiv.org/abs/1812.02713>`_
    paper, containing 3D objects annotated with fine-grained, instance-level, and hierarchical 3D part information.

    Args:
        root (string): Root directory where the dataset should be saved.
        dataset (str, optional): Which dataset to use (ins_seg_h5, or sem_seg_h5).
            (default: :obj:`sem_seg_h5`)
        obj_category (str, optional): which category to load.
            (default: :obj:`Bed`)
        level (str, optional): Which level of part semantic segmentation to use.
            (default: :obj:`3`)
        phase (str, optional): If :obj:`test`, loads the testing dataset,
            If :obj:`val`, loads the validation dataset,
            otherwise the training dataset. (default: :obj:`train`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
    """
    # the dataset we use for our paper is pre-released version
    def __init__(self,
                 root,
                 dataset='sem_seg_h5',
                 obj_category='Bed',
                 level=3,
                 phase='train',
                 transform=None,
                 pre_transform=None,
                 pre_filter=None):
        self.dataset = dataset
        self.level = level
        self.obj_category = obj_category
        self.object = '-'.join([self.obj_category, str(self.level)])
        self.level_folder = 'level_'+str(self.level)
        self.processed_file_folder = osp.join(self.dataset, self.level_folder, self.object)
        super(PartNet, self).__init__(root, transform, pre_transform, pre_filter)
        if phase == 'test':
            path = self.processed_paths[1]
        elif phase == 'val':
            path = self.processed_paths[2]
        else:
            path = self.processed_paths[0]
        self.data, self.slices = torch.load(path)

    @property
    def raw_file_names(self):
        return [self.dataset]

    @property
    def processed_file_names(self):
        return osp.join(self.processed_file_folder, 'train.pt'), osp.join(self.processed_file_folder, 'test.pt'), \
               osp.join(self.processed_file_folder, 'val.pt')

    def download(self):
        path = osp.join(self.raw_dir, self.dataset)
        if not osp.exists(path):
            raise FileExistsError('PartNet can only downloaded via application. '
                                  'See details in https://cs.stanford.edu/~kaichun/partnet/')
        # path = download_url(self.url, self.root)
        extract_zip(path, self.root)
        os.unlink(path)
        shutil.rmtree(self.raw_dir)
        name = self.url.split(os.sep)[-1].split('.')[0]
        os.rename(osp.join(self.root, name), self.raw_dir)

    def process(self):
        # save to processed_paths
        processed_path = osp.join(self.processed_dir, self.processed_file_folder)
        if not osp.exists(processed_path):
            os.makedirs(osp.join(processed_path))
        torch.save(self.process_set('train'), self.processed_paths[0])
        torch.save(self.process_set('test'), self.processed_paths[1])
        torch.save(self.process_set('val'), self.processed_paths[2])

    def process_set(self, dataset):
        if self.dataset == 'ins_seg_h5':
            raw_path = osp.join(self.raw_dir, 'ins_seg_h5_for_sgpn', self.dataset)
            categories = glob(osp.join(raw_path, '*'))
            categories = sorted([x.split(os.sep)[-1] for x in categories])

            data_list = []
            for target, category in enumerate(tqdm(categories)):
                folder = osp.join(raw_path, category)
                paths = glob('{}/{}-*.h5'.format(folder, dataset))
                labels, nors, opacitys, pts, rgbs = [], [], [], [], []
                for path in paths:
                    f = h5py.File(path)
                    pts += torch.from_numpy(f['pts'][:]).unbind(0)
                    labels += torch.from_numpy(f['label'][:]).to(torch.long).unbind(0)
                    nors += torch.from_numpy(f['nor'][:]).unbind(0)
                    opacitys += torch.from_numpy(f['opacity'][:]).unbind(0)
                    rgbs += torch.from_numpy(f['rgb'][:]).to(torch.float32).unbind(0)

                for i, (pt, label, nor, opacity, rgb) in enumerate(zip(pts, labels, nors, opacitys, rgbs)):
                    data = Data(pos=pt[:, :3], y=label, norm=nor[:, :3], x=torch.cat((opacity.unsqueeze(-1), rgb/255.), 1))

                    if self.pre_filter is not None and not self.pre_filter(data):
                        continue
                    if self.pre_transform is not None:
                        data = self.pre_transform(data)
                    data_list.append(data)
        else:
            raw_path = osp.join(self.raw_dir, self.dataset)
            categories = glob(osp.join(raw_path, self.object))
            categories = sorted([x.split(os.sep)[-1] for x in categories])
            data_list = []
            # class_name = []
            for target, category in enumerate(tqdm(categories)):
                folder = osp.join(raw_path, category)
                paths = glob('{}/{}-*.h5'.format(folder, dataset))
                labels, pts = [], []
                # clss = category.split('-')[0]

                for path in paths:
                    f = h5py.File(path)
                    pts += torch.from_numpy(f['data'][:].astype(np.float32)).unbind(0)
                    labels += torch.from_numpy(f['label_seg'][:].astype(np.float32)).to(torch.long).unbind(0)
                for i, (pt, label) in enumerate(zip(pts, labels)):
                    data = Data(pos=pt[:, :3], y=label)
                    # data = PartData(pos=pt[:, :3], y=label, clss=clss)
                    if self.pre_filter is not None and not self.pre_filter(data):
                        continue
                    if self.pre_transform is not None:
                        data = self.pre_transform(data)
                    data_list.append(data)
        return self.collate(data_list)


class PartData(Data):
    def __init__(self,
                 y=None,
                 pos=None,
                 clss=None):
        super(PartData).__init__(pos=pos, y=y)
        self.clss = clss


# allowable multiple choice node and edge features
# code from https://github.com/snap-stanford/ogb/blob/master/ogb/utils/features.py
allowable_features = {
    'possible_atomic_num_list' : list(range(1, 119)) + ['misc'],
    'possible_chirality_list' : [
        'CHI_UNSPECIFIED',
        'CHI_TETRAHEDRAL_CW',
        'CHI_TETRAHEDRAL_CCW',
        'CHI_OTHER'
    ],
    'possible_degree_list' : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
    'possible_formal_charge_list' : [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 'misc'],
    'possible_numH_list' : [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
    'possible_number_radical_e_list': [0, 1, 2, 3, 4, 'misc'],
    'possible_hybridization_list' : [
        'SP', 'SP2', 'SP3', 'SP3D', 'SP3D2', 'misc'
        ],
    'possible_is_aromatic_list': [False, True],
    'possible_is_in_ring_list': [False, True],
    'possible_bond_type_list' : [
        'SINGLE',
        'DOUBLE',
        'TRIPLE',
        'AROMATIC',
        'misc'
    ],
    'possible_bond_stereo_list': [
        'STEREONONE',
        'STEREOZ',
        'STEREOE',
        'STEREOCIS',
        'STEREOTRANS',
        'STEREOANY',
    ],
    'possible_is_conjugated_list': [False, True],
}


def safe_index(l, e):
    """
    Return index of element e in list l. If e is not present, return the last index
    """
    try:
        return l.index(e)
    except:
        return len(l) - 1


def atom_to_feature_vector(atom):
    """
    Converts rdkit atom object to feature list of indices
    :param mol: rdkit atom object
    :return: list
    """
    atom_feature = [
            safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
            allowable_features['possible_chirality_list'].index(str(atom.GetChiralTag())),
            safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
            safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
            safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
            safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
            safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
            allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
            allowable_features['possible_is_in_ring_list'].index(atom.IsInRing()),
            ]
    return atom_feature


def get_atom_feature_dims():
    return list(map(len, [
        allowable_features['possible_atomic_num_list'],
        allowable_features['possible_chirality_list'],
        allowable_features['possible_degree_list'],
        allowable_features['possible_formal_charge_list'],
        allowable_features['possible_numH_list'],
        allowable_features['possible_number_radical_e_list'],
        allowable_features['possible_hybridization_list'],
        allowable_features['possible_is_aromatic_list'],
        allowable_features['possible_is_in_ring_list']
        ]))


def bond_to_feature_vector(bond):
    """
    Converts rdkit bond object to feature list of indices
    :param mol: rdkit bond object
    :return: list
    """
    bond_feature = [
                safe_index(allowable_features['possible_bond_type_list'], str(bond.GetBondType())),
                allowable_features['possible_bond_stereo_list'].index(str(bond.GetStereo())),
                allowable_features['possible_is_conjugated_list'].index(bond.GetIsConjugated()),
            ]
    return bond_feature


def get_bond_feature_dims():
    return list(map(len, [
        allowable_features['possible_bond_type_list'],
        allowable_features['possible_bond_stereo_list'],
        allowable_features['possible_is_conjugated_list']
        ]))


def atom_feature_vector_to_dict(atom_feature):
    [atomic_num_idx,
    chirality_idx,
    degree_idx,
    formal_charge_idx,
    num_h_idx,
    number_radical_e_idx,
    hybridization_idx,
    is_aromatic_idx,
    is_in_ring_idx] = atom_feature

    feature_dict = {
        'atomic_num': allowable_features['possible_atomic_num_list'][atomic_num_idx],
        'chirality': allowable_features['possible_chirality_list'][chirality_idx],
        'degree': allowable_features['possible_degree_list'][degree_idx],
        'formal_charge': allowable_features['possible_formal_charge_list'][formal_charge_idx],
        'num_h': allowable_features['possible_numH_list'][num_h_idx],
        'num_rad_e': allowable_features['possible_number_radical_e_list'][number_radical_e_idx],
        'hybridization': allowable_features['possible_hybridization_list'][hybridization_idx],
        'is_aromatic': allowable_features['possible_is_aromatic_list'][is_aromatic_idx],
        'is_in_ring': allowable_features['possible_is_in_ring_list'][is_in_ring_idx]
    }

    return feature_dict


def bond_feature_vector_to_dict(bond_feature):
    [bond_type_idx,
    bond_stereo_idx,
    is_conjugated_idx] = bond_feature

    feature_dict = {
        'bond_type': allowable_features['possible_bond_type_list'][bond_type_idx],
        'bond_stereo': allowable_features['possible_bond_stereo_list'][bond_stereo_idx],
        'is_conjugated': allowable_features['possible_is_conjugated_list'][is_conjugated_idx]
    }

    return feature_dict

def one_hot_vector_sm(input, set1, set2, set3):
    return torch.cat([set1[int(input[0]),:], set2[int(input[1]),:], set3[int(input[2]),:]])

def one_hot_vector_am(input, feat_dims):
    features = [torch.eye(feat_dims[i])[int(input[i]),:] for i in range(len(feat_dims))]
    return torch.cat(features)