File size: 10,623 Bytes
799e642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import uuid
import logging
import time
import os
import sys
from utils.logger import create_exp_dir
import glob


class ArgsInit(object):
    def __init__(self):
        parser = argparse.ArgumentParser(description="DeeperGCN")
        # ===================== DATASET =====================
        parser.add_argument(
            "--seed", type=int,
            default=1, help="Seed for numpy and torch"
        )
        parser.add_argument(
            "--num_workers", type=int, 
            default=0, help="number of workers (default: 0)"
        )
        parser.add_argument(
            "--batch_size", type=int, 
            default=5120, help="input batch size for training (default: 5120)",
        )
        parser.add_argument(
            "--feature", type=str,
            default="full", help="two options: full or simple"
        )
        parser.add_argument(
            "--add_virtual_node",
            action="store_true"
        )
        
        # ===================== TRAIN & EVAL =====================
        parser.add_argument(
            "--use_gpu", action="store_true"
        )
        parser.add_argument(
            "--device", type=int,
            default=0, help="which gpu to use if any (default: 0)"
        )
        parser.add_argument(
            "--epochs", type=int,
            default=20, help="number of epochs to train (default: 300)",
        )
        parser.add_argument(
            "--lr", type=float,
            default=5e-5, help="learning rate set for optimizer (default: 5e-5)"
        )
        parser.add_argument(
            "--dropout", type=float,
            default=0.2, help="Dropout rate layer (default: 0.2)"
        )
        # model
        parser.add_argument(
            "--num_layers",
            type=int,
            default=20,
            help="the number of layers of the networks",
        )
        parser.add_argument(
            "--mlp_layers",
            type=int,
            default=3,
            help="the number of layers of mlp in conv",
        )
        parser.add_argument(
            "--hidden_channels",
            type=int,
            default=128,
            help="the dimension of embeddings of nodes and edges",
        )
        parser.add_argument(
            "--block",
            default="res+",
            type=str,
            help="graph backbone block type {res+, res, dense, plain}",
        )
        parser.add_argument("--conv", type=str, default="gen", help="the type of GCNs")
        parser.add_argument(
            "--gcn_aggr",
            type=str,
            default="softmax",
            help="the aggregator of GENConv [mean, max, add, softmax, softmax_sg, power]",
        )
        parser.add_argument(
            "--norm", type=str, default="batch", help="the type of normalization layer"
        )
        parser.add_argument(
            "--num_tasks", type=int, default=1, help="the number of prediction tasks"
        )
        # learnable parameters
        parser.add_argument(
            "--t", type=float, default=1.0, help="the temperature of SoftMax"
        )
        parser.add_argument(
            "--p", type=float, default=1.0, help="the power of PowerMean"
        )
        parser.add_argument("--learn_t", action="store_true")
        parser.add_argument("--learn_p", action="store_true")
        # message norm
        parser.add_argument("--msg_norm", action="store_true")
        parser.add_argument("--learn_msg_scale", action="store_true")
        # encode edge in conv
        parser.add_argument("--conv_encode_edge", action="store_true")
        # graph pooling type
        parser.add_argument(
            "--graph_pooling", type=str, default="mean", help="graph pooling method"
        )
        # save model
        parser.add_argument(
            "--model_save_path",
            type=str,
            default="model_ckpt",
            help="the directory used to save models",
        )
        parser.add_argument("--save", type=str, default="EXP", help="experiment name")
        # load pre-trained model
        parser.add_argument(
            "--model_load_init_path",
            type=str,
            default="/media/SSD5/pruiz/home/Best_Models",
            help="the directory to load adversarial weights",
        )
        parser.add_argument(
            "--model_load_prot_init_path",
            type=str,
            default="/media/SSD5/pruiz/home/Best_Models",
            help="the directory to load protein weights",
        )
        parser.add_argument(
            "--model_load_path",
            type=str,
            default="Checkpoint_Last_model.pth",
            help="the path of pre-trained model",
        )
        parser.add_argument(
            "--resume",
            action="store_true",
            default=False,
            help="resume training from a previous model",
        )
        # data partition
        parser.add_argument("--cross_val", type=int, default=0, help="Data partition")
        # Task
        parser.add_argument(
            "--task_type", type=str, default="classification", help="Choose task type"
        )
        parser.add_argument(
            "--binary",
            action="store_true",
            default=False,
            help="Performed de binary task",
        )
        parser.add_argument(
            "--balanced_loader",
            action="store_true",
            default=False,
            help="Balance the dataloader",
        )
        parser.add_argument(
            "--target", type=str, default=None, help="Target for the binary task"
        )
        parser.add_argument(
            "--nclasses", type=int, default=102, help="number of target classes"
        )
        parser.add_argument(
            "--num_features",
            type=int,
            default=2,
            help="Num of features used for simple classification",
        )
        # PROTEIN MODEL
        parser.add_argument(
            "--LMPM",
            action="store_true",
            default=False,
            help="Initialize training the LM and PM jointly.",
        )
        parser.add_argument(
            "--PLANET",
            action="store_true",
            default=False,
            help="Initialize training PLANET.",
        )
        parser.add_argument(
            "--use_prot", action="store_true", default=False, help="Use protein info"
        )
        parser.add_argument(
            "--freeze_molecule",
            action="store_true",
            default=False,
            help="Whether to freeze molecule network",
        )
        parser.add_argument(
            "--num_layers_prot",
            type=int,
            default=20,
            help="the number of layers of the networks",
        )
        parser.add_argument(
            "--mlp_layers_prot",
            type=int,
            default=3,
            help="the number of layers of mlp in conv",
        )
        parser.add_argument(
            "--hidden_channels_prot",
            type=int,
            default=128,
            help="the dimension of embeddings of nodes and edges",
        )
        parser.add_argument("--msg_norm_prot", action="store_true", default=False)
        parser.add_argument(
            "--learn_msg_scale_prot", action="store_true", default=False
        )
        parser.add_argument(
            "--conv_encode_edge_prot", action="store_true", default=False
        )
        parser.add_argument("--use_prot_metadata", action="store_true", default=False)
        parser.add_argument(
            "--num_metadata",
            type=int,
            default=240,
            help="Number of metadata of the protein.",
        )
        parser.add_argument(
            "--scalar",
            action="store_true",
            default=False,
            help="Use same multiplier factor for all metadata",
        )
        # CONCATENATION MULTIPLIER
        parser.add_argument(
            "--multi_concat",
            action="store_true",
            default=False,
            help="Use a multiplier to concant info",
        )
        # CONCATENATION MLP
        parser.add_argument(
            "--MLP",
            action="store_true",
            default=False,
            help="Use a multiplier to concant info",
        )
        # ADVERSARIAL AUGMENTATION TRAINING
        parser.add_argument(
            "--init_adv_training",
            action="store_true",
            default=False,
            help="Initialize training with adversarial molecules",
        )
        parser.add_argument(
            "--advs",
            action="store_true",
            default=False,
            help="Training with adversarial molecules",
        )
        parser.add_argument(
            "--saliency",
            action="store_true",
            default=False,
            help="Allow backpropagation through atom features.",
        )
        parser.add_argument(
            "--inference_path",
            type=str,
            help='path model for inference',
            default=None
        )
        parser.add_argument(
            "--target_checkpoint_path",
            type=str,
            help='path to the target checkpoints',
            default=None
        )
        parser.add_argument(
            "--target_list",
            type=str,
            help='path to the target list mappings',
            default=None
        )
        parser.add_argument(
            "--input_file_smiles",
            type=str,
            help='path input file with smiles for inference',
            default=None
        )
        parser.add_argument(
            "--output_file",
            type=str,
            help='path output file with predictions',
            default=None
        )

        self.args = parser.parse_args()

    def save_exp(self):
        self.args.save = "{}/Fold{}".format(self.args.save, str(self.args.cross_val))
        self.args.save = "log/{}".format(self.args.save)
        self.args.model_save_path = os.path.join(
            self.args.save, self.args.model_save_path
        )
        create_exp_dir(self.args.save, scripts_to_save=glob.glob("*.py"))
        log_format = "%(asctime)s %(message)s"
        logging.basicConfig(
            stream=sys.stdout,
            level=logging.INFO,
            format=log_format,
            datefmt="%m/%d %I:%M:%S %p",
        )
        fh = logging.FileHandler(os.path.join(self.args.save, "log.txt"))
        fh.setFormatter(logging.Formatter(log_format))
        logging.getLogger().addHandler(fh)

        return self.args