Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| model_name = "juliensimon/wav2vec2-conformer-rel-pos-large-finetuned-speech-commands" | |
| p = pipeline("audio-classification", model=model_name) | |
| def process(file): | |
| pred = p(file) | |
| labels = dict() | |
| for l in pred: | |
| labels[l['label']]=l['score'] | |
| return labels | |
| # Gradio inputs | |
| mic = gr.inputs.Audio(source='microphone', type='filepath', label='Speech input', optional=True) | |
| # Gradio outputs | |
| keyword = gr.outputs.Label(num_top_classes=3) | |
| description = "This Space showcases a wav2vec2-conformer-rel-pos-large model fine-tuned for audio classification on the speech_commands dataset. \n \n It can spot one of the following keywords: 'Yes', 'No', 'Up', 'Down', 'Left', 'Right', 'On', 'Off', 'Stop', 'Go', 'Zero', 'One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Bed', 'Bird', 'Cat', 'Dog', 'Happy', 'House', 'Marvin', 'Sheila', 'Tree', 'Wow', 'Backward', 'Forward', 'Follow', 'Learn', 'Visual'." | |
| iface = gr.Interface( | |
| theme='huggingface', | |
| description=description, | |
| fn=process, | |
| layout='horizontal', | |
| inputs=[mic], | |
| outputs=[keyword], | |
| examples=[ | |
| ['backward16k.wav'], | |
| ['happy16k.wav'], | |
| ['marvin16k.wav'], | |
| ['seven16k.wav'], | |
| ['stop16k.wav'], | |
| ['up16k.wav'], | |
| ], | |
| allow_flagging=False | |
| ) | |
| iface.launch() | |