import pytorch_lightning as pl import torch import torch.nn as nn from models.backbone import SSLVisionTransformer from models.dpt_head import DPTHead class SSLAE(nn.Module): def __init__(self, pretrained=None, classify=True, n_bins=256, huge=False): super().__init__() if huge == True: self.backbone = SSLVisionTransformer( embed_dim=1280, num_heads=20, out_indices=(9, 16, 22, 29), depth=32, pretrained=pretrained, ) self.decode_head = DPTHead( classify=classify, in_channels=(1280, 1280, 1280, 1280), embed_dims=1280, post_process_channels=[160, 320, 640, 1280], ) else: self.backbone = SSLVisionTransformer(pretrained=pretrained) self.decode_head = DPTHead(classify=classify, n_bins=256) def forward(self, x): x = self.backbone(x) x = self.decode_head(x) return x class SSLModule(pl.LightningModule): def __init__(self, ssl_path="compressed_SSLbaseline.pth"): super().__init__() if "huge" in ssl_path: self.chm_module_ = SSLAE(classify=True, huge=True).eval() else: self.chm_module_ = SSLAE(classify=True, huge=False).eval() if "compressed" in ssl_path: ckpt = torch.load(ssl_path, map_location="cpu") self.chm_module_ = torch.quantization.quantize_dynamic( self.chm_module_, {torch.nn.Linear, torch.nn.Conv2d, torch.nn.ConvTranspose2d}, dtype=torch.qint8, ) self.chm_module_.load_state_dict(ckpt, strict=False) else: ckpt = torch.load(ssl_path, map_location="cpu") state_dict = ckpt["state_dict"] self.chm_module_.load_state_dict(state_dict) self.chm_module = lambda x: 10 * self.chm_module_(x) def forward(self, x): x = self.chm_module(x) return x