Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
import torch | |
from torch import nn | |
import torchvision | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from torch.nn.modules.utils import _pair as to_2tuple | |
import math | |
import warnings | |
from collections import OrderedDict | |
from torch import Tensor | |
import torch.nn.functional as F | |
from typing import Callable, Optional, Tuple, Union | |
from functools import partial | |
import pdb | |
class MaskingGenerator: | |
def __init__( | |
self, | |
input_size, | |
num_masking_patches=None, | |
min_num_patches=4, | |
max_num_patches=None, | |
min_aspect=0.3, | |
max_aspect=None, | |
): | |
if not isinstance(input_size, tuple): | |
input_size = (input_size,) * 2 | |
self.height, self.width = input_size | |
self.num_patches = self.height * self.width | |
self.num_masking_patches = num_masking_patches | |
self.min_num_patches = min_num_patches | |
self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches | |
max_aspect = max_aspect or 1 / min_aspect | |
self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) | |
def __repr__(self): | |
repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( | |
self.height, | |
self.width, | |
self.min_num_patches, | |
self.max_num_patches, | |
self.num_masking_patches, | |
self.log_aspect_ratio[0], | |
self.log_aspect_ratio[1], | |
) | |
return repr_str | |
def get_shape(self): | |
return self.height, self.width | |
def _mask(self, mask, max_mask_patches): | |
delta = 0 | |
for attempt in range(10): | |
target_area = random.uniform(self.min_num_patches, max_mask_patches) | |
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) | |
h = int(round(math.sqrt(target_area * aspect_ratio))) | |
w = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w < self.width and h < self.height: | |
top = random.randint(0, self.height - h) | |
left = random.randint(0, self.width - w) | |
num_masked = mask[top : top + h, left : left + w].sum() | |
# Overlap | |
if 0 < h * w - num_masked <= max_mask_patches: | |
for i in range(top, top + h): | |
for j in range(left, left + w): | |
if mask[i, j] == 0: | |
mask[i, j] = 1 | |
delta += 1 | |
if delta > 0: | |
break | |
return delta | |
def __call__(self, num_masking_patches=0): | |
mask = np.zeros(shape=self.get_shape(), dtype=np.bool) | |
mask_count = 0 | |
while mask_count < num_masking_patches: | |
max_mask_patches = num_masking_patches - mask_count | |
max_mask_patches = min(max_mask_patches, self.max_num_patches) | |
delta = self._mask(mask, max_mask_patches) | |
if delta == 0: | |
break | |
else: | |
mask_count += delta | |
return mask | |
def resize(input, | |
size=None, | |
scale_factor=None, | |
mode='nearest', | |
align_corners=None, | |
warning=False): | |
if warning: | |
if size is not None and align_corners: | |
input_h, input_w = tuple(int(x) for x in input.shape[2:]) | |
output_h, output_w = tuple(int(x) for x in size) | |
if output_h > input_h or output_w > output_h: | |
if ((output_h > 1 and output_w > 1 and input_h > 1 | |
and input_w > 1) and (output_h - 1) % (input_h - 1) | |
and (output_w - 1) % (input_w - 1)): | |
warnings.warn( | |
f'When align_corners={align_corners}, ' | |
'the output would more aligned if ' | |
f'input size {(input_h, input_w)} is `x+1` and ' | |
f'out size {(output_h, output_w)} is `nx+1`') | |
return F.interpolate(input, size, scale_factor, mode, align_corners) | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = nn.GELU(), | |
drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: Tensor) -> Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class LayerScale(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
init_values: Union[float, Tensor] = 1e-5, | |
inplace: bool = False, | |
) -> None: | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x: Tensor) -> Tensor: | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = False, | |
drop: float = 0.0, | |
attn_drop: float = 0.0, | |
init_values=None, | |
drop_path: float = 0.0, | |
act_layer: Callable[..., nn.Module] = nn.GELU(), | |
norm_layer: Callable[..., nn.Module] = nn.LayerNorm, | |
attn_class: Callable[..., nn.Module] = Attention, | |
ffn_layer: Callable[..., nn.Module] = Mlp, | |
) -> None: | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_class( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ffn_layer( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.sample_drop_ratio = drop_path | |
def forward(self, x: Tensor) -> Tensor: | |
#pdb.set_trace() | |
def attn_residual_func(x: Tensor) -> Tensor: | |
return self.ls1(self.attn(self.norm1(x))) | |
def ffn_residual_func(x: Tensor) -> Tensor: | |
return self.ls2(self.mlp(self.norm2(x))) | |
if self.training and self.sample_drop_ratio > 0.1: | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
elif self.training and self.sample_drop_ratio > 0.0: | |
x = x + self.drop_path1(attn_residual_func(x)) | |
x = x + self.drop_path1(ffn_residual_func(x)) | |
else: | |
x = x + attn_residual_func(x) | |
x = x + ffn_residual_func(x) | |
return x | |
def make_2tuple(x): | |
if isinstance(x, tuple): | |
assert len(tuple) == 2 | |
return x | |
assert isinstance(x, int) | |
return (x, x) | |
class PatchEmbed(nn.Module): | |
""" | |
2D image to patch embedding: (B,C,H,W) -> (B,N,D) | |
Args: | |
img_size: Image size. | |
patch_size: Patch token size. | |
in_chans: Number of input image channels. | |
embed_dim: Number of linear projection output channels. | |
norm_layer: Normalization layer. | |
""" | |
def __init__( | |
self, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer: Optional[Callable] = None, | |
) -> None: | |
super().__init__() | |
image_HW = make_2tuple(img_size) | |
patch_HW = make_2tuple(patch_size) | |
patch_grid_size = ( | |
image_HW[0] // patch_HW[0], | |
image_HW[1] // patch_HW[1], | |
) | |
self.img_size = image_HW | |
self.patch_size = patch_HW | |
self.patches_resolution = patch_grid_size | |
self.num_patches = patch_grid_size[0] * patch_grid_size[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x: Tensor) -> Tensor: | |
_, _, H, W = x.shape | |
patch_H, patch_W = self.patch_size | |
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" | |
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" | |
x = self.proj(x) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x | |
def flops(self) -> float: | |
Ho, Wo = self.patches_resolution | |
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
class DinoVisionTransformer(nn.Module): | |
"""Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=0, | |
global_pool="token", | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
representation_size=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
weight_init="", | |
init_values=1., | |
embed_layer=PatchEmbed, | |
norm_layer=None, | |
act_layer=None, | |
block_fn=Block, | |
ffn_layer="mlp", | |
drop_path_uniform=False, | |
patch_drop=0.0, | |
sin_cos_embeddings=False, | |
local_crops_size=96, | |
multiple_pos_embeddings=False, | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
global_pool (str): type of global pooling for final sequence (default: 'token') | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
weight_init: (str): weight init scheme | |
init_values: (float): layer-scale init values | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
act_layer: (nn.Module): MLP activation layer | |
""" | |
super().__init__() | |
assert global_pool in ("", "avg", "token") | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 1 | |
self.grad_checkpointing = False | |
self.sin_cos_embeddings = sin_cos_embeddings | |
self.multiple_pos_embeddings = multiple_pos_embeddings | |
self.patch_embed = embed_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
if self.sin_cos_embeddings: | |
self.pos_embed = torch.Tensor(()) | |
logger.info("using sin-cos fixed embeddings") | |
pass | |
elif self.multiple_pos_embeddings: | |
logger.info("using multiple position embeddings (one for global one for local)") | |
self.pos_embeds = nn.ParameterDict() | |
self.pos_embeds[str(img_size)] = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
n_local_patches = (local_crops_size // patch_size) ** 2 | |
self.pos_embeds[str(local_crops_size)] = nn.Parameter(torch.zeros(1, n_local_patches, embed_dim)) | |
self.pos_embed = None | |
else: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if drop_path_uniform is True: | |
dpr = [drop_path_rate] * depth | |
else: | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
if ffn_layer == "mlp": | |
#print("using MLP layer as FFN") | |
ffn_layer = Mlp | |
elif ffn_layer == "swiglu": | |
#print("using SwiGLU layer as FFN") | |
ffn_layer = SwiGLUFFN | |
elif ffn_layer == "identity": | |
#print("using Identity layer as FFN") | |
def f(*args, **kwargs): | |
return nn.Identity() | |
ffn_layer = f | |
else: | |
raise NotImplementedError | |
self.blocks = nn.ModuleList( | |
[ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
ffn_layer=ffn_layer, | |
init_values=init_values, | |
) | |
for i in range(depth) | |
] | |
) | |
use_fc_norm = self.global_pool == "avg" | |
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() | |
# Representation layer. Used for original ViT models w/ in21k pretraining. | |
self.representation_size = representation_size | |
self.pre_logits = nn.Identity() | |
if representation_size: | |
self._reset_representation(representation_size) | |
# Classifier Head | |
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() | |
final_chs = self.representation_size if self.representation_size else self.embed_dim | |
self.head = nn.Linear(final_chs, num_classes) if num_classes > 0 else nn.Identity() | |
self.mask_generator = MaskingGenerator( | |
input_size=(img_size // patch_size, img_size // patch_size), | |
max_num_patches=0.5 * img_size // patch_size * img_size // patch_size, | |
) | |
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) | |
# if weight_init != "skip": | |
# self.init_weights(weight_init) | |
def _reset_representation(self, representation_size): | |
self.representation_size = representation_size | |
if self.representation_size: | |
self.pre_logits = nn.Sequential( | |
OrderedDict([("fc", nn.Linear(self.embed_dim, self.representation_size)), ("act", nn.Tanh())]) | |
) | |
else: | |
self.pre_logits = nn.Identity() | |
def init_weights(self, mode=""): | |
assert mode in ("jax", "jax_nlhb", "moco", "") | |
head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0 | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=0.02) | |
elif self.pos_embeds: | |
for v in self.pos_embeds.values(): | |
trunc_normal_(v, std=0.02) | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(get_init_weights_vit(mode, head_bias), self) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
init_weights_vit_timm(m) | |
def load_pretrained(self, checkpoint_path, prefix=""): | |
_load_weights(self, checkpoint_path, prefix) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token", "dist_token"} | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r"^cls_token|pos_embed|patch_embed", # stem and embed | |
blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))], | |
) | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes: int, global_pool=None, representation_size=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ("", "avg", "token") | |
self.global_pool = global_pool | |
if representation_size is not None: | |
self._reset_representation(representation_size) | |
final_chs = self.representation_size if self.representation_size else self.embed_dim | |
self.head = nn.Linear(final_chs, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, 1:].mean(dim=1) if self.global_pool == "avg" else x[:, 0] | |
x = self.fc_norm(x) | |
x = self.pre_logits(x) | |
return x if pre_logits else self.head(x) | |
def interpolate_pos_encoding(self, x, w, h): | |
if self.sin_cos_embeddings: | |
w0 = w // self.patch_embed.patch_size[0] | |
step_coef = (w0-1) / 3.14 | |
omega_coef = 10000 | |
sin_cos_embed = get_2d_sincos_pos_embed_cached_device( | |
embed_dim=x.shape[-1], grid_size=w0, step_coef=step_coef, omega_coef=omega_coef, device=x.device, cls_token=True | |
) | |
return sin_cos_embed | |
elif self.multiple_pos_embeddings: | |
_m = sum((v.mean() * 0 for v in self.pos_embeds.values())) | |
pos_embed = self.pos_embeds[str(w)] + _m | |
class_pos_embed = torch.zeros_like(pos_embed[:1,:1]) | |
return torch.cat((class_pos_embed, pos_embed), dim=1) | |
else: | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == h: | |
return self.pos_embed | |
class_pos_embed = self.pos_embed[:, 0] | |
patch_pos_embed = self.pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_embed.patch_size[0] | |
h0 = h // self.patch_embed.patch_size[0] | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode="bicubic", align_corners=True, recompute_scale_factor=True | |
) | |
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def mask_patches_with_probability_p(self, x, mask_ratio_tuple, p): | |
B, N, _ = x.shape | |
n_samples_masked = int(B * p) | |
mask_ratio_min, mask_ratio_max = mask_ratio_tuple | |
masks = torch.stack( | |
[ | |
torch.BoolTensor(self.mask_generator(int(N * random.uniform(mask_ratio_min, mask_ratio_max)))) | |
for _ in range(0, n_samples_masked) | |
] | |
+ [torch.BoolTensor(self.mask_generator(0)) for _ in range(n_samples_masked, B)] | |
).to( | |
x.device | |
) | |
masks = masks[torch.randperm(B, device=x.device)].flatten(1) | |
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) | |
return x, masks | |
def mask_patches_with_probability_p_upperbound(self, x, mask_ratio_tuple, p): | |
B, N, _ = x.shape | |
n_samples_masked = int(B * p) | |
probs = torch.linspace(*mask_ratio_tuple, n_samples_masked + 1) | |
upperbound = 0 | |
masks_list = [] | |
for i in range(0, n_samples_masked): | |
prob_min = probs[i] | |
prob_max = probs[i+1] | |
masks_list.append(torch.BoolTensor(self.mask_generator(int(N * random.uniform(prob_min, prob_max))))) | |
upperbound += int(N * prob_max) | |
for i in range(n_samples_masked, B): | |
masks_list.append(torch.BoolTensor(self.mask_generator(0))) | |
masks = torch.stack(masks_list).to(x.device) | |
masks = masks[torch.randperm(B, device=x.device)].flatten(1) | |
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) | |
return x, masks, upperbound | |
def prepare_tokens(self, x, mask_ratio_tuple=(0.0, 0.0), mask_sample_probability=0.0, ibot_balanced_masking=False): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) | |
masks = None | |
n_masked_patches_upperbound = None | |
cls_token = self.cls_token | |
do_ibot = max(mask_ratio_tuple) > 0.0 and mask_sample_probability > 0.0 | |
if do_ibot: | |
if ibot_balanced_masking: | |
logger.debug("using balanced masking") | |
x, masks, n_masked_patches_upperbound = self.mask_patches_with_probability_p_upperbound( | |
x, mask_ratio_tuple=mask_ratio_tuple, p=mask_sample_probability | |
) | |
else: | |
logger.debug("not using balanced masking") | |
x, masks = self.mask_patches_with_probability_p( | |
x, mask_ratio_tuple=mask_ratio_tuple, p=mask_sample_probability | |
) | |
else: | |
cls_token = cls_token + 0 * self.mask_token # hack to use the mask_token param to not crash ddp... | |
x = torch.cat((cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.pos_drop(x + self.interpolate_pos_encoding(x, w, h)) | |
return x, masks, n_masked_patches_upperbound | |
def forward_features(self, x, mask_ratio_tuple=(0.0, 0.0), mask_sample_probability=0.0, ibot_balanced_masking=False): | |
x, masks, n_masked_patches_upperbound = self.prepare_tokens(x, mask_ratio_tuple, mask_sample_probability, ibot_balanced_masking) | |
for blk in self.blocks: | |
x = blk(x) | |
x_norm = self.norm(x) | |
return { | |
"x_norm_clstoken": x_norm[:, 0], | |
"x_norm_patchtokens": x_norm[:, 1:], | |
"x_prenorm": x, | |
"masks": masks, | |
"n_masked_patches_upperbound": n_masked_patches_upperbound, | |
} | |
def get_intermediate_layers(self, x, n=1): | |
x, _, _ = self.prepare_tokens(x) | |
# we return the output tokens from the `n` last blocks | |
output = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if len(self.blocks) - i <= n: | |
output.append(self.norm(x)) | |
return output | |
def forward(self, *args, is_training=False, **kwargs): | |
ret = self.forward_features(*args, **kwargs) | |
if is_training: | |
return ret | |
else: | |
return ret["x_norm_clstoken"] | |
class AdaptivePadding(nn.Module): | |
"""Applies padding to input (if needed) so that input can get fully covered | |
by filter you specified. It support two modes "same" and "corner". The | |
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around | |
input. The "corner" mode would pad zero to bottom right. | |
Args: | |
kernel_size (int | tuple): Size of the kernel: | |
stride (int | tuple): Stride of the filter. Default: 1: | |
dilation (int | tuple): Spacing between kernel elements. | |
Default: 1. | |
padding (str): Support "same" and "corner", "corner" mode | |
would pad zero to bottom right, and "same" mode would | |
pad zero around input. Default: "corner". | |
Example: | |
>>> kernel_size = 16 | |
>>> stride = 16 | |
>>> dilation = 1 | |
>>> input = torch.rand(1, 1, 15, 17) | |
>>> adap_pad = AdaptivePadding( | |
>>> kernel_size=kernel_size, | |
>>> stride=stride, | |
>>> dilation=dilation, | |
>>> padding="corner") | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
>>> input = torch.rand(1, 1, 16, 17) | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
""" | |
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): | |
super(AdaptivePadding, self).__init__() | |
assert padding in ('same', 'corner') | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
def get_pad_shape(self, input_shape): | |
input_h, input_w = input_shape | |
kernel_h, kernel_w = self.kernel_size | |
stride_h, stride_w = self.stride | |
output_h = math.ceil(input_h / stride_h) | |
output_w = math.ceil(input_w / stride_w) | |
pad_h = max((output_h - 1) * stride_h + | |
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) | |
pad_w = max((output_w - 1) * stride_w + | |
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) | |
return pad_h, pad_w | |
def forward(self, x): | |
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding == 'corner': | |
x = F.pad(x, [0, pad_w, 0, pad_h]) | |
elif self.padding == 'same': | |
x = F.pad(x, [ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
]) | |
return x | |
class SSLVisionTransformer(DinoVisionTransformer): | |
"""Vision Transformer. | |
""" | |
def __init__(self, | |
interpolate_mode='bicubic', | |
init_cfg=None, | |
pretrained=None, | |
img_size=224, | |
patch_size=16, | |
#embed_dim=1024, | |
#depth=24, | |
#num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
init_values=1., | |
out_indices=(4, 11, 17, 23), | |
final_norm=False, | |
with_cls_token=True, | |
output_cls_token=True, | |
frozen_stages=100, | |
*args, **kwargs): | |
super(SSLVisionTransformer, self).__init__(*args, **kwargs) | |
if output_cls_token: | |
assert with_cls_token is True, f'with_cls_token must be True if' \ | |
f'set output_cls_token to True, but got {with_cls_token}' | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be set at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is not None: | |
raise TypeError('pretrained must be a str or None') | |
if len(self.blocks)==1: | |
self.blocks = self.blocks[0] | |
if isinstance(out_indices, int): | |
if out_indices == -1: | |
out_indices = len(self.blocks) - 1 | |
self.out_indices = [out_indices] | |
elif isinstance(out_indices, list) or isinstance(out_indices, tuple): | |
self.out_indices = out_indices | |
else: | |
raise TypeError('out_indices must be type of int, list or tuple') | |
self.interpolate_mode = interpolate_mode | |
self.pretrained = pretrained | |
self.frozen_stages = frozen_stages | |
self.detach = False | |
self.with_cls_token = with_cls_token | |
self.output_cls_token = output_cls_token | |
self.final_norm = final_norm | |
self.patch_size = self.patch_embed.patch_size | |
self.adapad = AdaptivePadding(kernel_size=self.patch_size, stride=self.patch_size, padding='same') | |
if pretrained: | |
self.init_weights(pretrained) | |
self._freeze_stages() | |
def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode): | |
"""Resize pos_embed weights. | |
Resize pos_embed using bicubic interpolate method. | |
Args: | |
pos_embed (torch.Tensor): Position embedding weights. | |
input_shpae (tuple): Tuple for (downsampled input image height, | |
downsampled input image width). | |
pos_shape (tuple): The resolution of downsampled origin training | |
image. | |
mode (str): Algorithm used for upsampling: | |
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | | |
``'trilinear'``. Default: ``'nearest'`` | |
Return: | |
torch.Tensor: The resized pos_embed of shape [B, L_new, C] | |
""" | |
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' | |
pos_h, pos_w = pos_shape | |
cls_token_weight = pos_embed[:, 0] | |
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] | |
pos_embed_weight = pos_embed_weight.reshape( | |
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) | |
pos_embed_weight = resize( | |
pos_embed_weight, size=input_shpae, align_corners=False, mode=mode) | |
cls_token_weight = cls_token_weight.unsqueeze(1) | |
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) | |
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) | |
return pos_embed | |
def init_weights(self, pretrained): | |
print("init_weights", pretrained) | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg.get('type') == 'Pretrained'): | |
checkpoint = torch.load(pretrained, map_location='cpu') | |
if 'state_dict' in checkpoint: | |
# timm checkpoint | |
state_dict = checkpoint['state_dict'] | |
elif 'model' in checkpoint: | |
# deit checkpoint | |
state_dict = checkpoint['model'] | |
elif 'teacher' in checkpoint: | |
# dino eval checkpoint | |
state_dict = checkpoint['teacher'] | |
else: | |
state_dict = checkpoint | |
if len([k for k in state_dict.keys() if 'teacher.backbone.' in k]) > 0: | |
state_dict = {k.replace('teacher.backbone.', ''):v for k,v in state_dict.items() if 'teacher.backbone' in k} | |
if len([k for k in state_dict.keys() if 'backbone.' in k]) > 0: | |
state_dict = {k.replace('backbone.', ''):v for k,v in state_dict.items()} | |
if 'pos_embed' in state_dict.keys(): | |
if self.pos_embed.shape != state_dict['pos_embed'].shape: | |
print(f'Resize the pos_embed shape from ' | |
f'{state_dict["pos_embed"].shape} to ' | |
f'{self.pos_embed.shape}') | |
h, w = (224, 224) # self.img_size | |
pos_size = int( | |
math.sqrt(state_dict['pos_embed'].shape[1] - 1)) | |
state_dict['pos_embed'] = self.resize_pos_embed( | |
state_dict['pos_embed'], | |
(h // self.patch_size[0], w // self.patch_size[1]), | |
(pos_size, pos_size), self.interpolate_mode) | |
self.load_state_dict(state_dict) | |
else: | |
super(SSLVisionTransformer, self).init_weights() | |
def forward(self, x): | |
with torch.set_grad_enabled(not self.detach): | |
_, _, old_w, old_h = x.shape | |
xx = self.adapad(x) | |
x = F.pad(x, (0, xx.shape[-1] - x.shape[-1], 0, xx.shape[-2] - x.shape[-2])) | |
B, nc, w, h = x.shape | |
x, _, _ = self.prepare_tokens(x) | |
# we return the output tokens from the `n` last blocks | |
outs = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in self.out_indices: | |
if self.with_cls_token: | |
out = x[:, 1:] | |
else: | |
out = x | |
B, _, C = out.shape | |
out = out.reshape(B, w // self.patch_size[0], h // self.patch_size[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
if self.output_cls_token: | |
out = [out, x[:, 0]] | |
else: | |
out = [out] | |
if self.final_norm: | |
out = [self.norm(o) for o in out] | |
if self.detach: | |
out = [o.detach() for o in out] | |
outs.append(out) | |
return tuple(outs) | |
def train(self, mode=True): | |
super(SSLVisionTransformer, self).train(mode) | |
self.detach = False | |
self._freeze_stages() | |
def _freeze_stages(self): | |
"""Freeze stages param and norm stats.""" | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for m in [self.patch_embed]: | |
for param in m.parameters(): | |
param.requires_grad = False | |
self.cls_token.requires_grad = False | |
self.pos_embed.requires_grad = False | |
self.mask_token.requires_grad = False | |
if self.frozen_stages >= len(self.blocks) - 1: | |
self.norm.eval() | |
for param in self.norm.parameters(): | |
param.requires_grad = False | |
self.detach = True | |
for i, layer in enumerate(self.blocks): | |
if i <= self.frozen_stages: | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |