llm_Test / app.py
juanesvelez's picture
Update app.py
98c78fa verified
raw
history blame
1.74 kB
import solara
import torch
import torch.nn.functional as F
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
# Cargar el modelo y el tokenizer
model_name = "datificate/gpt2-small-spanish"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = solara.reactive("Escribe algo en español")
@solara.component
def Page():
with solara.Column(margin=10):
solara.Markdown("# Predicción del Próximo Token")
solara.Markdown("Ingrese un texto en español y vea las predicciones para el próximo token.")
def on_action_cell(column, row_index):
text.value += tokenizer.decode(top_10.indices[0][row_index])
cell_actions = [solara.CellAction(icon="mdi-thumb-up", name="Seleccionar", on_click=on_action_cell)]
solara.InputText("Ingrese texto:", value=text, continuous_update=True)
if text.value != "":
tokens = tokenizer.encode(text.value, return_tensors="pt")
outputs = model.generate(tokens, max_new_tokens=1, output_scores=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id)
scores = F.softmax(outputs.scores[0], dim=-1)
top_10 = torch.topk(scores, 10)
df = pd.DataFrame({
"probs": [f"{value:.2%}" for value in top_10.values[0]],
"next token ID": top_10.indices[0].numpy(),
"predicted next token": [tokenizer.decode([idx]) for idx in top_10.indices[0]]
})
solara.Markdown("### Predicción")
solara.DataFrame(df, items_per_page=10, cell_actions=cell_actions)
Page()