Spaces:
Runtime error
Runtime error
import solara | |
import torch | |
import torch.nn.functional as F | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Cargar el modelo y el tokenizer | |
model_name = "datificate/gpt2-small-spanish" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
text = solara.reactive("Escribe algo en español") | |
def Page(): | |
with solara.Column(margin=10): | |
solara.Markdown("# Predicción del Próximo Token") | |
solara.Markdown("Ingrese un texto en español y vea las predicciones para el próximo token.") | |
def on_action_cell(column, row_index): | |
text.value += tokenizer.decode(top_10.indices[0][row_index]) | |
cell_actions = [solara.CellAction(icon="mdi-thumb-up", name="Seleccionar", on_click=on_action_cell)] | |
solara.InputText("Ingrese texto:", value=text, continuous_update=True) | |
if text.value != "": | |
tokens = tokenizer.encode(text.value, return_tensors="pt") | |
outputs = model.generate(tokens, max_new_tokens=1, output_scores=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id) | |
scores = F.softmax(outputs.scores[0], dim=-1) | |
top_10 = torch.topk(scores, 10) | |
df = pd.DataFrame({ | |
"probs": [f"{value:.2%}" for value in top_10.values[0]], | |
"next token ID": top_10.indices[0].numpy(), | |
"predicted next token": [tokenizer.decode([idx]) for idx in top_10.indices[0]] | |
}) | |
solara.Markdown("### Predicción") | |
solara.DataFrame(df, items_per_page=10, cell_actions=cell_actions) | |
Page() |