llm_Test / app.py
juanesvelez's picture
Create app.py
50cc7b6 verified
raw
history blame
1.23 kB
import solara as sol
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "datificate/gpt2-small-spanish"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def predict_next_token(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
next_token_logits = outputs.logits[:, -1, :]
next_token_probs = torch.softmax(next_token_logits, dim=-1)
top_k_probs, top_k_indices = torch.topk(next_token_probs, 10)
top_k_tokens = tokenizer.convert_ids_to_tokens(top_k_indices[0])
return list(zip(top_k_tokens, top_k_probs[0].tolist()))
@sol.component
def NextTokenPredictionApp():
text = sol.use_state("")
predictions = sol.use_state([])
def on_text_change(new_text):
text.set(new_text)
preds = predict_next_token(new_text)
predictions.set(preds)
sol.InputText(value=text.value, on_change=on_text_change, placeholder="Escribe algo en español...")
if predictions.value:
sol.Markdown("### Predicciones de tokens:")
for token, prob in predictions.value:
sol.Markdown(f"- {token}: {prob:.4f}")
sol.run(NextTokenPredictionApp)