Spaces:
Build error
Build error
| # Copyright 2022 The T5X Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for training_utils.""" | |
| import functools | |
| import os | |
| # Emulate 2 devices on CPU. Import before JAX. | |
| os.environ['XLA_FLAGS'] = '--xla_force_host_platform_device_count=2' | |
| from absl.testing import absltest # pylint: disable=g-import-not-at-top | |
| from flax import core as flax_core | |
| import jax | |
| from jax import numpy as jnp | |
| import numpy as np | |
| from t5x.contrib.moe import training_utils | |
| class MatchFnTest(absltest.TestCase): | |
| def test_regex_prefix(self): | |
| match_fn = training_utils.match_fn(r'.*test.*') | |
| self.assertTrue(match_fn('/test/something')) | |
| self.assertTrue(match_fn('to/test/or/not/')) | |
| self.assertFalse(match_fn('no/match')) | |
| def test_empty_prefix(self): | |
| match_fn = training_utils.match_fn(None) | |
| self.assertFalse(match_fn('/test/something')) | |
| self.assertFalse(match_fn('to/test/or/not/')) | |
| class ScaleShardedGradsTest(absltest.TestCase): | |
| def test_scale_sharded_grads(self): | |
| grads = flax_core.freeze({ | |
| 'encoder': { | |
| 'expert_layer': jnp.ones((2, 3)), | |
| 'regular_layer': jnp.ones((1, 2)) | |
| } | |
| }) | |
| sharded_match_fn = training_utils.match_fn(r'.*expert.*') | |
| scaled_grads = training_utils.scale_sharded_grads( | |
| grads, sharded_match_fn, scale_factor=100.) | |
| expected_grads = flax_core.freeze({ | |
| 'encoder': { | |
| 'expert_layer': 100. * jnp.ones((2, 3)), | |
| 'regular_layer': jnp.ones((1, 2)) | |
| } | |
| }) | |
| jax.tree_map( | |
| functools.partial(np.testing.assert_allclose, rtol=3e-7), scaled_grads, | |
| expected_grads) | |
| class TreeTest(absltest.TestCase): | |
| def test_tree_flatten_with_names(self): | |
| tree = {'ff_0': {'kernel': 0, 'bias': 1}, 'ff_1': {'kernel': 2, 'bias': 3}} | |
| names_and_values, _ = training_utils._tree_flatten_with_names(tree) | |
| expected_names_and_values = [('ff_0/bias', 1), ('ff_0/kernel', 0), | |
| ('ff_1/bias', 3), ('ff_1/kernel', 2)] | |
| self.assertEqual(names_and_values, expected_names_and_values) | |
| # Check that values match regular JAX tree_flatten. | |
| self.assertEqual([x for _, x in names_and_values], | |
| jax.tree_flatten(tree)[0]) | |
| def test_tree_map_with_names(self): | |
| tree = {'a': 1, 'b': 2} | |
| mapped_tree = training_utils.tree_map_with_names( | |
| f=lambda x: -x, param_tree=tree, match_name_fn=lambda name: name == 'b') | |
| self.assertEqual(mapped_tree, {'a': 1, 'b': -2}) | |
| if __name__ == '__main__': | |
| absltest.main() | |