Upload app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,12 @@ import torch
|
|
6 |
from dotenv import load_dotenv
|
7 |
from pinecone import Pinecone
|
8 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Detect GPU availability and set device
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -42,6 +48,12 @@ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/msmarc
|
|
42 |
# Initialize chat history manually
|
43 |
chat_history = []
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Helper function to recursively flatten any list to a string
|
46 |
def flatten_to_string(data):
|
47 |
if isinstance(data, list):
|
@@ -53,12 +65,15 @@ def flatten_to_string(data):
|
|
53 |
# Function to interact with Pinecone and OpenAI GPT-4
|
54 |
def get_model_response(human_input):
|
55 |
try:
|
|
|
|
|
|
|
56 |
# Embed the query
|
57 |
query_embedding = torch.tensor(embedding_model.embed_query(human_input)).to(device)
|
58 |
query_embedding = query_embedding.cpu().numpy().tolist()
|
59 |
|
60 |
-
# Query Pinecone index
|
61 |
-
search_results = index.query(vector=query_embedding, top_k=
|
62 |
|
63 |
context_list, images = [], []
|
64 |
for ind, result in enumerate(search_results['matches']):
|
@@ -66,9 +81,15 @@ def get_model_response(human_input):
|
|
66 |
image_url = flatten_to_string(result.get('metadata', {}).get('image_path', None))
|
67 |
figure_desc = flatten_to_string(result.get('metadata', {}).get('figure_description', ''))
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
context_string = '\n\n'.join(context_list)
|
74 |
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
from pinecone import Pinecone
|
8 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
9 |
+
from fuzzywuzzy import fuzz
|
10 |
+
import logging
|
11 |
+
import re # To help with preprocessing
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
|
16 |
# Detect GPU availability and set device
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
48 |
# Initialize chat history manually
|
49 |
chat_history = []
|
50 |
|
51 |
+
# Helper function to preprocess text (removing unnecessary words)
|
52 |
+
def preprocess_text(text):
|
53 |
+
# Convert text to lowercase and remove special characters
|
54 |
+
text = re.sub(r'[^\w\s]', '', text.lower())
|
55 |
+
return text.strip()
|
56 |
+
|
57 |
# Helper function to recursively flatten any list to a string
|
58 |
def flatten_to_string(data):
|
59 |
if isinstance(data, list):
|
|
|
65 |
# Function to interact with Pinecone and OpenAI GPT-4
|
66 |
def get_model_response(human_input):
|
67 |
try:
|
68 |
+
# Preprocess the human input (cleaning up unnecessary words)
|
69 |
+
processed_input = preprocess_text(human_input)
|
70 |
+
|
71 |
# Embed the query
|
72 |
query_embedding = torch.tensor(embedding_model.embed_query(human_input)).to(device)
|
73 |
query_embedding = query_embedding.cpu().numpy().tolist()
|
74 |
|
75 |
+
# Query Pinecone index with top_k=5 to get more potential matches
|
76 |
+
search_results = index.query(vector=query_embedding, top_k=5, include_metadata=True)
|
77 |
|
78 |
context_list, images = [], []
|
79 |
for ind, result in enumerate(search_results['matches']):
|
|
|
81 |
image_url = flatten_to_string(result.get('metadata', {}).get('image_path', None))
|
82 |
figure_desc = flatten_to_string(result.get('metadata', {}).get('figure_description', ''))
|
83 |
|
84 |
+
# Preprocess the figure description and match keywords
|
85 |
+
processed_figure_desc = preprocess_text(figure_desc)
|
86 |
+
similarity_score = fuzz.token_set_ratio(processed_input, processed_figure_desc)
|
87 |
+
logging.info(f"Matching '{processed_input}' with '{processed_figure_desc}', similarity score: {similarity_score}")
|
88 |
+
|
89 |
+
if similarity_score >= 80: # Keep the threshold at 80 for now
|
90 |
+
context_list.append(f"Relevant information: {document_content}")
|
91 |
+
if image_url and figure_desc:
|
92 |
+
images.append((figure_desc, image_url))
|
93 |
|
94 |
context_string = '\n\n'.join(context_list)
|
95 |
|