Spaces:
Runtime error
Runtime error
File size: 10,846 Bytes
6eff5e7 4bea31b b1499f3 05a7bdc 6eff5e7 580aef7 6eff5e7 580aef7 6eff5e7 580aef7 6eff5e7 05a7bdc 6eff5e7 05a7bdc 963bf46 6eff5e7 580aef7 6eff5e7 e16ae7e 6eff5e7 e16ae7e 05a7bdc 963bf46 6eff5e7 05a7bdc 6eff5e7 963bf46 6eff5e7 963bf46 6eff5e7 05a7bdc 6eff5e7 963bf46 6eff5e7 963bf46 e16ae7e 6eff5e7 e16ae7e 6eff5e7 e16ae7e 963bf46 e16ae7e 963bf46 e16ae7e 6eff5e7 2fad322 6eff5e7 2fad322 6eff5e7 963bf46 e16ae7e 6eff5e7 963bf46 e16ae7e 6eff5e7 e16ae7e 6eff5e7 963bf46 6eff5e7 e16ae7e 6eff5e7 e16ae7e 6eff5e7 963bf46 6eff5e7 963bf46 6eff5e7 e16ae7e 963bf46 e16ae7e 6eff5e7 4bea31b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
import os
from transformers import AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
import pickle
import nltk
nltk.download('punkt') # tokenizer
nltk.download('averaged_perceptron_tagger') # postagger
import time
from input_format import *
from score import *
# load document scoring model
torch.cuda.is_available = lambda : False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pretrained_model = 'allenai/specter'
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
doc_model = AutoModel.from_pretrained(pretrained_model)
doc_model.to(device)
# load sentence model
sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
sent_model.to(device)
def get_similar_paper(
abstract_text_input,
pdf_file_input,
author_id_input,
num_papers_show=10
):
print('retrieving similar papers...')
start = time.time()
input_sentences = sent_tokenize(abstract_text_input)
# TODO handle pdf file input
if pdf_file_input is not None:
name = None
papers = []
raise ValueError('Use submission abstract instead.')
else:
# Get author papers from id
name, papers = get_text_from_author_id(author_id_input)
# Compute Doc-level affinity scores for the Papers
print('computing scores...')
titles, abstracts, doc_scores = compute_document_score(
doc_model,
tokenizer,
abstract_text_input,
papers,
batch=50
)
tmp = {
'titles': titles,
'abstracts': abstracts,
'doc_scores': doc_scores
}
pickle.dump(tmp, open('paper_info.pkl', 'wb'))
# Select top K choices of papers to show
titles = titles[:num_papers_show]
abstracts = abstracts[:num_papers_show]
doc_scores = doc_scores[:num_papers_show]
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
end = time.time()
print('retrieval complete in [%0.2f] seconds'%(end - start))
return (
gr.update(choices=display_title, interactive=True, visible=True), # set of papers
gr.update(choices=input_sentences, interactive=True), # submission sentences
gr.update(visible=True), # title row
gr.update(visible=True), # abstract row
gr.update(visible=True) # button
)
def get_highlights(
abstract_text_input,
pdf_file_input,
abstract,
K=2
):
print('obtaining highlights..')
start = time.time()
# Compute sent-level and phrase-level affinity scores for each papers
sent_ids, sent_scores, info = get_highlight_info(
sent_model,
abstract_text_input,
abstract,
K=K
)
input_sentences = sent_tokenize(abstract_text_input)
num_sents = len(input_sentences)
word_scores = dict()
# different highlights for each input sentence
for i in range(num_sents):
word_scores[str(i)] = {
"original": abstract,
"interpretation": list(zip(info['all_words'], info[i]['scores']))
} # format to feed to for Gradio Interpretation component
tmp = {
'source_sentences': input_sentences,
'highlight': word_scores
}
pickle.dump(tmp, open('highlight_info.pkl', 'wb'))
end = time.time()
print('done in [%0.2f] seconds'%(end - start))
# update the visibility of radio choices
return gr.update(visible=True)
def update_name(author_id_input):
# update the name of the author based on the id input
name, _ = get_text_from_author_id(author_id_input)
return gr.update(value=name)
def change_output_highlight(source_sent_choice):
# change the output highlight based on the sentence selected from the submission
fname = 'highlight_info.pkl'
if os.path.exists(fname):
tmp = pickle.load(open(fname, 'rb'))
source_sents = tmp['source_sentences']
highlights = tmp['highlight']
for i, s in enumerate(source_sents):
#print('changing highlight')
if source_sent_choice == s:
return highlights[str(i)]
else:
return
def change_paper(selected_papers_radio):
# change the paper to show based on the paper selected
fname = 'paper_info.pkl'
if os.path.exists(fname):
tmp = pickle.load(open(fname, 'rb'))
for title, abstract, aff_score in zip(tmp['titles'], tmp['abstracts'], tmp['doc_scores']):
display_title = '[ %0.3f ] %s'%(aff_score, title)
if display_title == selected_papers_radio:
#print('changing paper')
return title, abstract, aff_score # update title, abstract, and affinity score fields
else:
return
with gr.Blocks() as demo:
# TODO Text description about the app and disclaimer
### TEXT Description
gr.Markdown(
"""
# Paper Matching Helper
This is a tool designed to help match an academic paper (submission) to a potential peer reviewer, by presenting information that may be relevant to the users.
Below we describe how to use the tool. Also feel free to check out the [video]() for a more detailed rundown.
##### Input
- The tool requires two inputs: (1) an academic paper's abstract in text format, (2) and a potential reviewer's [Semantic Scholar](https://www.semanticscholar.org/) profile link. Once you put in a valid profile link, the reviewer's name will be displayed.
- Once the name is confirmed, press the "Search Similar Papers" button.
##### Search Similar Papers
- Based on the input information above, the tool will search for similar papers from the reviewer's previous publications using [Semantic Scholar API](https://www.semanticscholar.org/product/api).
- It will list top 10 similar papers along with the affinity score (ranging from 0 -1), computed using text representations from a [language model](https://github.com/allenai/specter/tree/master/specter).
- You can click on different papers to see title, abstract, and affinity scores in detail.
##### Show Relevant Parts
- Once you have retrieved the similar papers above, and selected a paper that you are interested in, you will have an option to see what parts of the selected paper may be relevant to the submission abstract. Click on the "Show Relevant Parts" button.
- On the left, you will see individual sentences from the submission abstract you can select from.
- On the right, you will see the abstract of the selected paper, with highlights.
- <span style="color:red">Red</span> highlights: sentences from the reviewer's paper abstract with high semantic similarity to the selected sentence.
- <span style="color:blue">Blue</span> highlights: matching phrases from the reviewer's paper abstract that is included in the selected sentence.
- To see relevant parts in a different paper from the reviewer, select the paper above and re-click "Show Relevant Parts" to refresh.
**Disclaimer.** This tool and its output should not serve as a sole justification for confirming a match for the submission. It is intended as a supplementary tool that the user may use at their discretion; the correctness of the output of the tool is not guaranteed. This may be improved by updating the internal models used to compute the affinity scores and sentence relevance, which may require additional research independently. The tool does not compromise the privacy of the reviewers as it relies only on their publicly-available information (e.g., names and list of previously published papers).
"""
)
### INPUT
with gr.Row() as input_row:
with gr.Column():
abstract_text_input = gr.Textbox(label='Submission Abstract')
with gr.Column():
pdf_file_input = gr.File(label='OR upload a submission PDF File')
with gr.Column():
with gr.Row():
author_id_input = gr.Textbox(label='Reviewer Link or ID (Semantic Scholar)')
with gr.Row():
name = gr.Textbox(label='Confirm Reviewer Name', interactive=False)
author_id_input.change(fn=update_name, inputs=author_id_input, outputs=name)
with gr.Row():
compute_btn = gr.Button('Search Similar Papers from the Reviewer')
### PAPER INFORMATION
# show multiple papers in radio check box to select from
with gr.Row():
selected_papers_radio = gr.Radio(
choices=[], # will be udpated with the button click
visible=False, # also will be updated with the button click
label='Selected Top Papers from the Reviewer'
)
# selected paper information
with gr.Row(visible=False) as title_row:
with gr.Column(scale=3):
paper_title = gr.Textbox(label='Title', interactive=False)
with gr.Column(scale=1):
affinity= gr.Number(label='Affinity', interactive=False, value=0)
with gr.Row(visibe=False) as abstract_row:
paper_abstract = gr.Textbox(label='Abstract', interactive=False, visible=False)
with gr.Row(visible=False) as explain_button_row:
explain_btn = gr.Button('Show Relevant Parts from Selected Paper')
### RELEVANT PARTS (HIGHLIGHTS)
with gr.Row():
with gr.Column(scale=2): # text from submission
source_sentences = gr.Radio(
choices=[],
visible=False,
label='Sentences from Submission Abstract',
)
with gr.Column(scale=3): # highlighted text from paper
highlight = gr.components.Interpretation(paper_abstract)
### EVENT LISTENERS
# retrieve similar papers
compute_btn.click(
fn=get_similar_paper,
inputs=[
abstract_text_input,
pdf_file_input,
author_id_input
],
outputs=[
selected_papers_radio,
source_sentences,
title_row,
paper_abstract,
explain_button_row,
]
)
# get highlights
explain_btn.click(
fn=get_highlights,
inputs=[
abstract_text_input,
pdf_file_input,
paper_abstract
],
outputs=source_sentences
)
# change highlight based on selected sentences from submission
source_sentences.change(
fn=change_output_highlight,
inputs=source_sentences,
outputs=highlight
)
# change paper to show based on selected papers
selected_papers_radio.change(
fn=change_paper,
inputs=selected_papers_radio,
outputs= [
paper_title,
paper_abstract,
affinity
]
)
if __name__ == "__main__":
demo.launch()
|