SickstadiumAI / video_processing.py
jschwab21's picture
Update video_processing.py
d94d4f7 verified
raw
history blame
8.67 kB
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
from cachetools import cached, TTLCache
import numpy as np
import logging
from multiprocessing import Pool
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import ProcessPoolExecutor
# Setup basic logging
#logging.basicConfig(level=logging.INFO)
categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
#initializing CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
#initializing ZG placeholder
resnet50 = models.resnet50(pretrained=True).eval().to(device)
#initialize caches
#scene_cache = TTLCache(maxsize=100, ttl=86400) # cache up to 100 items, each for 1 day
#frame_cache = TTLCache(maxsize=1000, ttl=86400)
#analysis_cache = TTLCache(maxsize=1000, ttl=86400)
def cache_info_decorator(func, cache):
"""Decorator to add caching and logging to a function."""
key_func = lambda *args, **kwargs: "_".join(map(str, args)) # Simple key func based on str(args)
@cached(cache, key=key_func)
def wrapper(*args, **kwargs):
key = key_func(*args, **kwargs)
if key in cache:
logging.info(f"Cache hit for key: {key}")
else:
logging.info(f"Cache miss for key: {key}. Caching result.")
return func(*args, **kwargs)
return wrapper
def classify_frame(frame):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(Image.fromarray(frame))
input_batch = input_tensor.unsqueeze(0).to(device)
# Use the globally loaded ResNet-50 model
with torch.no_grad():
output = resnet50(input_batch)
probabilities = F.softmax(output[0], dim=0)
results_array = np.array([probabilities[i].item() for i in range(len(categories))])
return results_array
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=33)) # Adjusted threshold for finer segmentation
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
def extract_frames(video_path, start_time, end_time):
video_clip = VideoFileClip(video_path).subclip(start_time, end_time)
return [video_clip.get_frame(t / video_clip.fps) for t in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 10))]
def analyze_frame(args):
frame, positive_feature, negative_features = args
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
scene_prob = positive_similarity - negative_similarities
frame_sentiments = classify_frame(frame)
return scene_prob, frame_sentiments
def analyze_scenes(video_path, scenes, description):
scene_scores = []
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
tasks = []
for start_time, end_time in scenes:
frames = extract_frames(video_path, start_time, end_time)
for frame in frames:
tasks.append((frame, positive_feature, negative_features))
scene_results = {}
with ProcessPoolExecutor(max_workers=8) as executor:
results = list(executor.map(analyze_frame, tasks))
for ((start_time, end_time), (scene_prob, sentiments)) in zip(scenes, results):
if (start_time, end_time) not in scene_results:
scene_results[(start_time, end_time)] = {
'probabilities': [],
'sentiments': np.zeros(8)
}
scene_results[(start_time, end_time)]['probabilities'].append(scene_prob)
scene_results[(start_time, end_time)]['sentiments'] += sentiments
# Calculate averages and prepare the final scores
for (start_time, end_time), data in scene_results.items():
avg_prob = np.mean(data['probabilities'])
avg_sentiments = data['sentiments'] / len(data['probabilities'])
sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, avg_sentiments)}
scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
scene_scores.append((avg_prob, start_time, end_time, scene_duration, sentiment_percentages))
# Sort and select the best scene
scene_scores.sort(reverse=True, key=lambda x: x[0])
top_3_scenes = scene_scores[:3]
best_scene = max(top_3_scenes, key=lambda x: x[3])
if best_scene:
return (best_scene[1], best_scene[2]), best_scene[4]
else:
return None, {}
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def process_video(video_url, description):
video_path = download_video(video_url)
scenes = find_scenes(video_path)
best_scene = analyze_scenes(video_path, scenes, description)
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
# Assuming final_clip is a MoviePy VideoFileClip object
frame = np.array(final_clip.get_frame(0)) # Get the first frame at t=0 seconds
frame_classification = classify_frame(frame) # Classify the frame
print("Frame classification probabilities:", frame_classification)
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}")