Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
from scenedetect import SceneManager, open_video, split_video_ffmpeg | |
from scenedetect import VideoManager, SceneManager | |
from scenedetect.detectors import ContentDetector | |
from moviepy.editor import VideoFileClip | |
from transformers import CLIPProcessor, CLIPModel | |
import torch | |
import yt_dlp | |
from PIL import Image | |
import uuid | |
import subprocess | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device) | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
def download_video(url): | |
ydl_opts = { | |
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]', | |
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s', | |
'merge_output_format': 'mp4', | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
result = ydl.extract_info(url, download=True) | |
video_filename = ydl.prepare_filename(result) | |
safe_filename = sanitize_filename(video_filename) | |
if os.path.exists(video_filename) and video_filename != safe_filename: | |
os.rename(video_filename, safe_filename) | |
return safe_filename | |
def sanitize_filename(filename): | |
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename]) | |
def ensure_video_format(video_path): | |
output_dir = "temp_videos" | |
os.makedirs(output_dir, exist_ok=True) | |
temp_path = os.path.join(output_dir, f"formatted_{uuid.uuid4()}.mp4") | |
command = ['ffmpeg', '-i', video_path, '-c', 'copy', temp_path] | |
try: | |
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
return temp_path | |
except subprocess.CalledProcessError as e: | |
print(f"Error processing video with ffmpeg: {e.stderr.decode()}") | |
return None | |
def find_scenes(video_path): | |
# Ensure video path is a list, as required by VideoManager | |
video_manager = VideoManager([video_path]) | |
scene_manager = SceneManager() | |
# Add ContentDetector with an adjusted threshold for finer segmentation | |
scene_manager.add_detector(ContentDetector(threshold=33)) | |
# Begin processing the video | |
video_manager.start() | |
# Detect scenes | |
scene_manager.detect_scenes(frame_source=video_manager) | |
# Get the list of detected scenes | |
scene_list = scene_manager.get_scene_list() | |
# Release the video manager resources | |
video_manager.release() | |
# Convert scene list to timecodes | |
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list] | |
return scenes | |
def convert_timestamp_to_seconds(timestamp): | |
return float(timestamp) | |
def timecode_to_seconds(timecode): | |
h, m, s = timecode.split(':') | |
return int(h) * 3600 + int(m) * 60 + float(s) | |
def extract_frames(video_path, start_time, end_time): | |
frames = [] | |
video_clip = VideoFileClip(video_path).subclip(start_time, end_time) | |
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 5)): | |
frame = video_clip.get_frame(frame_time / video_clip.fps) | |
frames.append(frame) | |
return frames | |
def analyze_scenes(video_path, scenes, description): | |
scene_scores = [] | |
negative_descriptions = [ | |
"black screen", | |
"Intro text for a video", | |
"dark scene without much contrast", | |
"No people are in this scene", | |
"A still shot of natural scenery", | |
"Still-camera shot of a person's face" | |
] | |
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device) | |
text_features = model.get_text_features(**text_inputs).detach() | |
positive_feature, negative_features = text_features[0], text_features[1:] | |
for scene_num, (start_time, end_time) in enumerate(scenes): | |
start_seconds = timecode_to_seconds(start_time) | |
end_seconds = timecode_to_seconds(end_time) | |
frames = extract_frames(video_path, start_time, end_time) | |
if not frames: | |
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted") | |
continue | |
scene_prob = 0.0 | |
for frame in frames: | |
image = Image.fromarray(frame[..., ::-1]) | |
image_input = processor(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
image_features = model.get_image_features(**image_input).detach() | |
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item() | |
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item() | |
scene_prob += positive_similarity - negative_similarities | |
scene_prob /= len(frames) | |
scene_duration = end_seconds - start_seconds | |
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}") | |
scene_scores.append((scene_prob, start_time, end_time, scene_duration)) | |
scene_scores.sort(reverse=True, key=lambda x: x[0]) | |
top_scenes = scene_scores[:5] | |
longest_scene = max(top_scenes, key=lambda x: x[3]) | |
if longest_scene: | |
print(f"Longest Scene: Start={longest_scene[1]}, End={longest_scene[2]}, Probability={longest_scene[0]}, Duration={longest_scene[3]}") | |
else: | |
print("No suitable scene found") | |
return longest_scene[1:3] if longest_scene else None | |
def extract_best_scene(video_path, scene): | |
if scene is None: | |
return None | |
start_time, end_time = scene | |
video_clip = VideoFileClip(video_path).subclip(start_time, end_time) | |
return video_clip | |
def process_video(video_input, description, is_url=True): | |
video_path = download_video(video_input) if is_url else video_input | |
scenes = find_scenes(video_path) | |
if not scenes: | |
print("No scenes detected. Exiting.") | |
return None | |
best_scene = analyze_scenes(video_path, scenes, description) | |
if not best_scene: | |
print("No suitable scenes found. Exiting.") | |
return None | |
final_clip = extract_best_scene(video_path, best_scene) | |
if final_clip: | |
output_dir = "output" | |
os.makedirs(output_dir, exist_ok=True) | |
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4") | |
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac') | |
cleanup_temp_files() | |
return final_clip_path | |
return None | |
def cleanup_temp_files(): | |
temp_dir = 'temp_videos' | |
if os.path.exists(temp_dir): | |
for file in os.listdir(temp_dir): | |
file_path = os.path.join(temp_dir, file) | |
try: | |
if os.path.isfile(file_path): | |
os.unlink(file_path) | |
except Exception as e: | |
print(f"Error cleaning up temporary files: {e}") | |