SickstadiumAI / video_processing.py
jschwab21's picture
Update video_processing.py
918bcce verified
raw
history blame
6.16 kB
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=20)) # Adjusted threshold for finer segmentation
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
def extract_frames(video_path, start_time, end_time):
frames = []
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
# Extract more frames: every frame in the scene
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 5)):
frame = video_clip.get_frame(frame_time / video_clip.fps)
frames.append(frame)
return frames
def analyze_scenes(video_path, scenes, description):
scene_scores = []
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
# Tokenize and encode the description text
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
for scene_num, (start_time, end_time) in enumerate(scenes):
frames = extract_frames(video_path, start_time, end_time)
if not frames:
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
continue
scene_prob = 0.0
for frame in frames:
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
scene_prob += positive_similarity - negative_similarities
scene_prob /= len(frames)
scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}")
scene_scores.append((scene_prob, start_time, end_time, scene_duration))
# Sort scenes by probability in descending order and select the top 5
scene_scores.sort(reverse=True, key=lambda x: x[0])
top_scenes = scene_scores[:5]
# Find the longest scene among the top 5
longest_scene = max(top_scenes, key=lambda x: x[3])
if longest_scene:
print(f"Longest Scene: Start={longest_scene[1]}, End={longest_scene[2]}, Probability={longest_scene[0]}, Duration={longest_scene[3]}")
else:
print("No suitable scene found")
return longest_scene[1:3] if longest_scene else None
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def process_video(video_url, description):
video_path = download_video(video_url)
scenes = find_scenes(video_path)
best_scene = analyze_scenes(video_path, scenes, description)
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}")