SickstadiumAI / video_processing.py
jschwab21's picture
Update video_processing.py
4df7b58 verified
raw
history blame
8.9 kB
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
from cachetools import cached, TTLCache
import numpy as np
categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
#initializing CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
#initializing ZG placeholder
resnet50 = models.resnet50(pretrained=True).eval().to(device)
#initialize caches
scene_cache = TTLCache(maxsize=100, ttl=86400) # cache up to 100 items, each for 1 day
frame_cache = TTLCache(maxsize=100, ttl=86400)
analysis_cache = TTLCache(maxsize=100, ttl=86400)
def cache_info_decorator(func, cache):
"""Decorator to add caching and logging to a function."""
key_func = lambda *args, **kwargs: "_".join(map(str, args)) # Simple key func based on str(args)
@cached(cache, key=key_func)
def wrapper(*args, **kwargs):
key = key_func(*args, **kwargs)
if key in cache:
logging.info(f"Cache hit for key: {key}")
else:
logging.info(f"Cache miss for key: {key}. Caching result.")
return func(*args, **kwargs)
return wrapper
def classify_frame(frame):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(Image.fromarray(frame))
input_batch = input_tensor.unsqueeze(0).to(device)
# Use the globally loaded ResNet-50 model
with torch.no_grad():
output = resnet50(input_batch)
probabilities = F.softmax(output[0], dim=0)
results_array = np.array([probabilities[i].item() for i in range(len(categories))])
return results_array
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
@cache_info_decorator
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=33)) # Adjusted threshold for finer segmentation
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
@cache_info_decorator
def extract_frames(video_path, start_time, end_time):
frames = []
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
# Extract more frames: every frame in the scene
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 10)):
frame = video_clip.get_frame(frame_time / video_clip.fps)
frames.append(frame)
return frames
@cache_info_decorator
def analyze_scenes(video_path, scenes, description):
scene_scores = []
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
for scene_num, (start_time, end_time) in enumerate(scenes):
frames = extract_frames(video_path, start_time, end_time)
if not frames:
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
continue
scene_prob = 0.0
sentiment_distributions = np.zeros(8) # Assuming there are 8 sentiments
for frame in frames:
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
scene_prob += positive_similarity - negative_similarities
frame_sentiments = classify_frame(frame)
sentiment_distributions += np.array(frame_sentiments)
sentiment_distributions /= len(frames) # Normalize to get average probabilities
sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
scene_prob /= len(frames)
scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")
scene_scores.append((scene_prob, start_time, end_time, scene_duration, sentiment_percentages))
# Sort scenes by confidence, highest first
scene_scores.sort(reverse=True, key=lambda x: x[0])
# Select the longest scene from the top 3 highest confidence scenes
top_3_scenes = scene_scores[:3] # Get the top 3 scenes
best_scene = max(top_3_scenes, key=lambda x: x[3]) # Find the longest scene from these top 3
if best_scene:
print(f"Best Scene: Start={best_scene[1]}, End={best_scene[2]}, Probability={best_scene[0]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
return (best_scene[1], best_scene[2]), best_scene[4] # Returning a tuple with scene times and sentiments
else:
print("No suitable scene found")
return None, {}
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def process_video(video_url, description):
video_path = download_video(video_url)
scenes = find_scenes(video_path)
best_scene = analyze_scenes(video_path, scenes, description)
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
# Assuming final_clip is a MoviePy VideoFileClip object
frame = np.array(final_clip.get_frame(0)) # Get the first frame at t=0 seconds
frame_classification = classify_frame(frame) # Classify the frame
print("Frame classification probabilities:", frame_classification)
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}")