SickstadiumAI / app.py
jschwab21's picture
Update app.py
284005c verified
raw
history blame
5.29 kB
import gradio as gr
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
import uuid
import os
import matplotlib as plt
class CustomTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.orange,
secondary_hue: colors.Color | str = colors.orange,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Sora"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Sora"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="radial-gradient(circle at center, rgba(235, 87, 38, 1) 0%, rgba(235, 87, 38, 0) 70%), radial-gradient(#eb5726 1px, transparent 1px)",
body_text_color="#282828",
block_background_fill="#ffffff",
block_title_text_color="#eb5726",
block_label_text_color="#eb5726",
button_primary_background_fill="#eb5726",
button_primary_text_color="#ffffff",
)
custom_theme = CustomTheme()
def save_uploaded_file(uploaded_file):
upload_dir = "uploaded_videos"
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
with open(file_path, "wb") as f:
f.write(uploaded_file)
return file_path
def display_results(video_url, video_file, description):
if video_url:
video_path = download_video(video_url)
elif video_file:
video_path = save_uploaded_file(video_file)
else:
return "No video provided", None, None
scenes = find_scenes(video_path)
if not scenes:
return "No scenes detected", None, None
final_clip_path, sentiments = analyze_scenes(video_path, scenes, description)
if final_clip_path:
return final_clip_path, sentiments
else:
return "No matching scene found", None, None
# Custom CSS for additional styling
css = """
body {
background-color: #ffffff;
background-image: radial-gradient(#eb5726 1px, transparent 1px);
background-size: 10px 10px;
background-repeat: repeat;
background-attachment: fixed;
}
#video_url {
background-color: #ffffff;
color: #282828;
border: 2px solid #eb5726;
}
#description {
background-color: #ffffff;
color: #282828;
border: 2px solid #eb5726;
}
#submit_button {
background-color: #eb5726;
color: #ffffff;
border: 2px solid #ffffff;
}
#submit_button:hover {
background-color: #f5986e;
color: #ffffff;
border: 2px solid #ffffff;
}
label[for="video_url"] {
color: #eb5726 !important;
}
label[for="description"] {
color: #eb5726 !important;
}
h3 {
color: #eb5726;
}
.centered-markdown {
text-align: center;
background-color: #ffffff;
padding: 10px;
}
#sickstadium-title {
font-size: 3em !important;
font-weight: bold;
text-transform: uppercase;
}
"""
def save_uploaded_file(uploaded_file):
upload_dir = "uploaded_videos"
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
with open(file_path, "wb") as f:
f.write(uploaded_file)
return file_path
import matplotlib.pyplot as plt
def create_plot(sentiments):
categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
fig, ax = plt.subplots()
ax.bar(categories, sentiments)
ax.set_ylabel('Probability')
ax.set_title('Sentiment Distribution')
plt.setp(ax.get_xticklabels(), rotation=45, horizontalalignment='right')
return fig
with gr.Blocks(theme=custom_theme, css=css) as demo:
with gr.Column():
gr.Markdown("# **Sickstadium AI**", elem_classes="centered-markdown", elem_id="sickstadium-title")
video_url = gr.Textbox(label="Video URL:", elem_id="video_url")
video_file = gr.File(label="Upload Video File:", elem_id="video_file", interactive=True, file_types=["video"], type="binary")
description = gr.Textbox(label="Describe your clip:", elem_id="description")
submit_button = gr.Button("Process Video", elem_id="submit_button")
video_output = gr.Video(label="Processed Video", elem_id="video_output")
sentiment_plot = gr.Plot(label="Sentiment Analysis", elem_id="sentiment_plot")
submit_button.click(fn=display_results, inputs=[video_url, video_file, description], outputs=[video_output, sentiment_plot])
demo.launch()