Spaces:
Sleeping
Sleeping
import gradio as gr | |
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
from typing import Iterable | |
import uuid | |
import os | |
import plotly.graph_objects as go | |
class CustomTheme(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.orange, | |
secondary_hue: colors.Color | str = colors.orange, | |
neutral_hue: colors.Color | str = colors.gray, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
text_size: sizes.Size | str = sizes.text_md, | |
font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Sora"), | |
"ui-sans-serif", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Sora"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
text_size=text_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
body_background_fill="radial-gradient(circle at center, rgba(235, 87, 38, 1) 0%, rgba(235, 87, 38, 0) 70%), radial-gradient(#eb5726 1px, transparent 1px)", | |
body_text_color="#282828", | |
block_background_fill="#ffffff", | |
block_title_text_color="#eb5726", | |
block_label_text_color="#eb5726", | |
button_primary_background_fill="#eb5726", | |
button_primary_text_color="#ffffff", | |
) | |
custom_theme = CustomTheme() | |
def save_uploaded_file(uploaded_file): | |
upload_dir = "uploaded_videos" | |
os.makedirs(upload_dir, exist_ok=True) | |
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4") | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file) | |
return file_path | |
import gradio as gr | |
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files | |
import plotly.graph_objects as go | |
import os | |
import uuid | |
# Assuming CustomTheme and other setups are defined above this snippet | |
def display_results(video_url, video_file, description): | |
if video_url: | |
video_path = download_video(video_url) | |
elif video_file: | |
video_path = save_uploaded_file(video_file) | |
else: | |
return "No video provided", None, None | |
scenes = find_scenes(video_path) | |
if not scenes: | |
return "No scenes detected", None, None | |
best_scene_times, sentiments = analyze_scenes(video_path, scenes, description) | |
if not best_scene_times: | |
return "No matching scene found", None, None | |
final_clip = extract_best_scene(video_path, best_scene_times) | |
if final_clip: | |
output_dir = "output" | |
os.makedirs(output_dir, exist_ok=True) | |
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4") | |
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac') | |
cleanup_temp_files() | |
# Calculate the total sum of sentiment scores | |
total_score = sum(sentiments.values()) | |
if total_score == 0: | |
# Ensure there's no division by zero | |
sentiments = {k: 0 for k in sentiments} | |
# Prepare data for the radial chart | |
labels = list(sentiments.keys()) | |
values = [v / total_score * 100 for v in sentiments.values()] # Normalize to percentages | |
# Create a polar chart | |
fig = go.Figure(data=go.Scatterpolar( | |
r=values, | |
theta=labels, | |
fill='toself' | |
)) | |
fig.update_layout( | |
polar=dict( | |
radialaxis=dict( | |
visible=True, | |
range=[0, max(values) if values else 1] | |
)), | |
showlegend=False | |
) | |
return final_clip_path, final_clip_path, fig | |
else: | |
return "No matching scene found", None, None | |
# Assuming Gradio Blocks setup is defined below this snippet | |
# Custom CSS for additional styling | |
css = """ | |
body { | |
background-color: #ffffff; | |
background-image: radial-gradient(#eb5726 1px, transparent 1px); | |
background-size: 10px 10px; | |
background-repeat: repeat; | |
background-attachment: fixed; | |
} | |
#video_url { | |
background-color: #ffffff; | |
color: #282828; | |
border: 2px solid #eb5726; | |
} | |
#description { | |
background-color: #ffffff; | |
color: #282828; | |
border: 2px solid #eb5726; | |
} | |
#submit_button { | |
background-color: #eb5726; | |
color: #ffffff; | |
border: 2px solid #ffffff; | |
} | |
#submit_button:hover { | |
background-color: #f5986e; | |
color: #ffffff; | |
border: 2px solid #ffffff; | |
} | |
label[for="video_url"] { | |
color: #eb5726 !important; | |
} | |
label[for="description"] { | |
color: #eb5726 !important; | |
} | |
h3 { | |
color: #f07102; | |
} | |
.centered-markdown { | |
text-align: center; | |
background-color: #ffffff; | |
padding: 10px; | |
} | |
#sickstadium-title { | |
font-size: 3em !important; | |
font-weight: bold; | |
text-transform: uppercase; | |
} | |
""" | |
def save_uploaded_file(uploaded_file): | |
upload_dir = "uploaded_videos" | |
os.makedirs(upload_dir, exist_ok=True) | |
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4") | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file) | |
return file_path | |
with gr.Blocks(theme=custom_theme, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown("# **Sickstadium AI**", elem_classes="centered-markdown", elem_id="sickstadium-title") | |
gr.Markdown("### Upload your videos. Find sick clips. Tell your truth.", elem_classes="centered-markdown") | |
gr.Markdown("**Welcome to Sickstadium AI. Our goal is to empower content creators with the ability to tell their stories without the friction of traditional video editing software. Skip the timeline, and don't worry about your video editing skills. Upload your video, describe the clip you want, and let our AI video editor do the work for you. Get more info about the Sickstadium project at [Strongholdlabs.io](https://strongholdlabs.io/)**", elem_classes="centered-markdown") | |
video_url = gr.Textbox(label="Video URL:") | |
video_file = gr.File(label="Upload Video File:", type="binary") | |
description = gr.Textbox(label="Describe your clip:") | |
submit_button = gr.Button("Process Video", elem_id="submit_button") | |
video_output = gr.Video(label="Processed Video:") | |
download_output = gr.File(label="Download Processed Video:") | |
sentiment_output = gr.Plot(label="Predicted User Feedback:") # Changed from Markdown to Plot | |
submit_button.click(fn=display_results, inputs=[video_url, video_file, description], outputs=[video_output, download_output, sentiment_output]) | |
demo.launch() |