Spaces:
Sleeping
Sleeping
File size: 7,005 Bytes
dcb53fc 4a7c9de 939b575 16466ea 96c84ad 284005c 939b575 4a7c9de 939b575 90fdef7 939b575 90fdef7 939b575 55ea255 7b7fbb7 939b575 7b7fbb7 55ea255 939b575 90fdef7 7b7fbb7 55ea255 7b7fbb7 55ea255 7b7fbb7 55ea255 7b7fbb7 55ea255 7b7fbb7 55ea255 7b7fbb7 90fdef7 939b575 5d5059e 939b575 5deaa7a 939b575 5deaa7a 939b575 5deaa7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
import uuid
import os
import matplotlib as plt
class CustomTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.orange,
secondary_hue: colors.Color | str = colors.orange,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_md,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Sora"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Sora"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="radial-gradient(circle at center, rgba(235, 87, 38, 1) 0%, rgba(235, 87, 38, 0) 70%), radial-gradient(#eb5726 1px, transparent 1px)",
body_text_color="#282828",
block_background_fill="#ffffff",
block_title_text_color="#eb5726",
block_label_text_color="#eb5726",
button_primary_background_fill="#eb5726",
button_primary_text_color="#ffffff",
)
custom_theme = CustomTheme()
def save_uploaded_file(uploaded_file):
upload_dir = "uploaded_videos"
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
with open(file_path, "wb") as f:
f.write(uploaded_file)
return file_path
def display_results(video_url, video_file, description):
if video_url:
video_path = download_video(video_url)
elif video_file:
video_path = save_uploaded_file(video_file)
else:
return "No video provided", None, None
scenes = find_scenes(video_path)
if not scenes:
return "No scenes detected", None, None
best_scene, sentiment_distribution = analyze_scenes(video_path, scenes, description)
if best_scene:
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
# Create the radial plot using sentiment_distribution
if sentiment_distribution:
plot = create_radial_plot(sentiment_distribution)
return final_clip_path, plot
else:
return final_clip_path, "No sentiment data available"
else:
return "No matching scene found", None
else:
return "No suitable scenes found", None
# Custom CSS for additional styling
css = """
body {
background-color: #ffffff;
background-image: radial-gradient(#eb5726 1px, transparent 1px);
background-size: 10px 10px;
background-repeat: repeat;
background-attachment: fixed;
}
#video_url {
background-color: #ffffff;
color: #282828;
border: 2px solid #eb5726;
}
#description {
background-color: #ffffff;
color: #282828;
border: 2px solid #eb5726;
}
#submit_button {
background-color: #eb5726;
color: #ffffff;
border: 2px solid #ffffff;
}
#submit_button:hover {
background-color: #f5986e;
color: #ffffff;
border: 2px solid #ffffff;
}
label[for="video_url"] {
color: #eb5726 !important;
}
label[for="description"] {
color: #eb5726 !important;
}
h3 {
color: #eb5726;
}
.centered-markdown {
text-align: center;
background-color: #ffffff;
padding: 10px;
}
#sickstadium-title {
font-size: 3em !important;
font-weight: bold;
text-transform: uppercase;
}
"""
def save_uploaded_file(uploaded_file):
upload_dir = "uploaded_videos"
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
with open(file_path, "wb") as f:
f.write(uploaded_file)
return file_path
import matplotlib.pyplot as plt
def create_radial_plot(sentiments):
labels = list(sentiments.keys())
stats = list(sentiments.values())
num_vars = len(labels)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
stats += stats[:1]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.fill(angles, stats, color='red', alpha=0.25)
ax.plot(angles, stats, color='red', linewidth=2)
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels)
plt.show()
return fig
with gr.Blocks(theme=custom_theme, css=css) as demo:
with gr.Column():
gr.Markdown("# **Sickstadium AI**", elem_classes="centered-markdown", elem_id="sickstadium-title")
gr.Markdown("### Upload your videos. Find sick clips. Tell your truth.", elem_classes="centered-markdown")
gr.Markdown("**Welcome to Sickstadium AI. Our goal is to empower content creators with the ability to tell their stories without the friction of traditional video editing software. Skip the timeline, and don't worry about your video editing skills. Upload your video, describe the clip you want, and let our AI video editor do the work for you. Get more info about the Sickstadium project at [Strongholdlabs.io](https://strongholdlabs.io/)**", elem_classes="centered-markdown")
video_url = gr.Textbox(label="Video URL:", elem_id="video_url")
video_file = gr.File(label="Upload Video File:", interactive=True, file_types=["video"], type="binary")
description = gr.Textbox(label="Describe your clip:", elem_id="description")
submit_button = gr.Button("Process Video", elem_id="submit_button")
video_output = gr.Video(label="Processed Video", elem_id="video_output")
download_output = gr.File(label="Download Processed Video", elem_id="download_output", type="file") # Define this here
sentiment_plot = gr.Plot(label="Sentiment Distribution", elem_id="sentiment_plot") # Adding elem_id for clarity
submit_button.click(
fn=display_results,
inputs=[video_url, video_file, description],
outputs=[video_output, download_output, sentiment_plot]
)
demo.launch()
|