File size: 7,070 Bytes
dcb53fc
1e456a7
939b575
 
f9d282c
16466ea
96c84ad
54d1b5f
 
939b575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e456a7
 
 
 
 
 
 
f9d282c
54d1b5f
 
 
 
 
 
 
 
1e456a7
 
 
 
 
 
54d1b5f
15637ee
f9d282c
 
54d1b5f
1e456a7
4393803
e5facda
54d1b5f
e5facda
4393803
f9d282c
 
 
 
 
 
4393803
 
 
 
54d1b5f
 
 
 
 
 
 
 
 
 
 
 
 
4393803
54d1b5f
 
 
 
 
 
 
 
 
 
f9d282c
54d1b5f
 
 
4393803
f9d282c
a10ca18
939b575
 
 
 
0ddaca8
939b575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d282c
 
 
 
939b575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d282c
0ddaca8
f9d282c
 
 
 
 
 
 
 
4bd4f7f
5d5059e
eca1099
 
 
e5facda
 
 
84402a9
4757b5e
 
 
a561b64
5deaa7a
f9d282c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
import uuid
import os
import plotly.graph_objects as go

class CustomTheme(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.orange,
        secondary_hue: colors.Color | str = colors.orange,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_md,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Sora"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Sora"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="radial-gradient(circle at center, rgba(235, 87, 38, 1) 0%, rgba(235, 87, 38, 0) 70%), radial-gradient(#eb5726 1px, transparent 1px)",
            body_text_color="#282828",
            block_background_fill="#ffffff",
            block_title_text_color="#eb5726",
            block_label_text_color="#eb5726",
            button_primary_background_fill="#eb5726",
            button_primary_text_color="#ffffff",
        )

custom_theme = CustomTheme()

def save_uploaded_file(uploaded_file):
    upload_dir = "uploaded_videos"
    os.makedirs(upload_dir, exist_ok=True)
    file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
    with open(file_path, "wb") as f:
        f.write(uploaded_file)
    return file_path
    
import gradio as gr
from video_processing import process_video, download_video, find_scenes, analyze_scenes, extract_best_scene, cleanup_temp_files
import plotly.graph_objects as go
import os
import uuid

# Assuming CustomTheme and other setups are defined above this snippet

def display_results(video_url, video_file, description):
    if video_url:
        video_path = download_video(video_url)
    elif video_file:
        video_path = save_uploaded_file(video_file)
    else:
        return "No video provided", None, None

    scenes = find_scenes(video_path)
    if not scenes:
        return "No scenes detected", None, None

    best_scene_times, sentiments = analyze_scenes(video_path, scenes, description)
    if not best_scene_times:
        return "No matching scene found", None, None

    final_clip = extract_best_scene(video_path, best_scene_times)
    if final_clip:
        output_dir = "output"
        os.makedirs(output_dir, exist_ok=True)
        final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
        final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
        cleanup_temp_files()

        # Calculate the total sum of sentiment scores
        total_score = sum(sentiments.values())
        if total_score == 0:
            # Ensure there's no division by zero
            sentiments = {k: 0 for k in sentiments}

        # Prepare data for the radial chart
        labels = list(sentiments.keys())
        values = [v / total_score * 100 for v in sentiments.values()]  # Normalize to percentages

        # Create a polar chart
        fig = go.Figure(data=go.Scatterpolar(
            r=values,
            theta=labels,
            fill='toself'
        ))

        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=True,
                    range=[0, max(values) if values else 1]
                )),
            showlegend=False
        )

        return final_clip_path, final_clip_path, fig
    else:
        return "No matching scene found", None, None

# Assuming Gradio Blocks setup is defined below this snippet

        

# Custom CSS for additional styling
css = """
body {
    background-color: #ffffff;
    background-image: radial-gradient(#eb5726 1px, transparent 1px);
    background-size: 10px 10px;
    background-repeat: repeat;
    background-attachment: fixed;
}
#video_url {
    background-color: #ffffff;
    color: #282828;
    border: 2px solid #eb5726;
}
#description {
    background-color: #ffffff;
    color: #282828;
    border: 2px solid #eb5726;
}
#submit_button {
    background-color: #eb5726;
    color: #ffffff;
    border: 2px solid #ffffff;
}
#submit_button:hover {
    background-color: #f5986e;
    color: #ffffff;
    border: 2px solid #ffffff;
}
label[for="video_url"] {
    color: #eb5726 !important;
}
label[for="description"] {
    color: #eb5726 !important;
}
h3 {
    color: #eb5726;
}
.centered-markdown {
    text-align: center;
    background-color: #ffffff;
    padding: 10px;
}
#sickstadium-title {
    font-size: 3em !important;
    font-weight: bold;
    text-transform: uppercase;
}
"""


def save_uploaded_file(uploaded_file):
    upload_dir = "uploaded_videos"
    os.makedirs(upload_dir, exist_ok=True)
    file_path = os.path.join(upload_dir, f"{uuid.uuid4()}.mp4")
    with open(file_path, "wb") as f:
        f.write(uploaded_file)
    return file_path

with gr.Blocks(theme=custom_theme, css=css) as demo:
    with gr.Column():
        gr.Markdown("# **Sickstadium AI**", elem_classes="centered-markdown", elem_id="sickstadium-title")
        gr.Markdown("### Upload your videos. Find sick clips. Tell your truth.", elem_classes="centered-markdown")
        gr.Markdown("**Welcome to Sickstadium AI. Our goal is to empower content creators with the ability to tell their stories without the friction of traditional video editing software. Skip the timeline, and don't worry about your video editing skills. Upload your video, describe the clip you want, and let our AI video editor do the work for you. Get more info about the Sickstadium project at [Strongholdlabs.io](https://strongholdlabs.io/)**", elem_classes="centered-markdown")
        video_url = gr.Textbox(label="Video URL:")
        video_file = gr.File(label="Upload Video File:", type="binary")
        description = gr.Textbox(label="Describe your clip:")
        submit_button = gr.Button("Process Video", elem_id="submit_button")
        video_output = gr.Video(label="Processed Video:")
        download_output = gr.File(label="Download Processed Video:")
        sentiment_output = gr.Plot(label="Predicted User Feedback:")  # Changed from Markdown to Plot
        submit_button.click(fn=display_results, inputs=[video_url, video_file, description], outputs=[video_output, download_output, sentiment_output])

demo.launch()