File size: 5,490 Bytes
480d4ef
dcb53fc
 
0268b89
 
79da273
0268b89
1dd6469
3af1c8c
0268b89
 
 
79da273
 
 
0268b89
 
79da273
0d88658
2f13a57
0268b89
 
 
0d88658
2f13a57
0268b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76448d
3af1c8c
0268b89
12d9720
81edc2c
79da273
 
0268b89
 
3af1c8c
dcb53fc
51efef6
4793b98
51efef6
2977112
76008f4
4793b98
 
 
 
b0ff174
 
 
 
76008f4
b0ff174
4793b98
76008f4
 
b0ff174
4793b98
b0ff174
51efef6
a8c338d
51efef6
 
a8c338d
 
 
eea176b
51efef6
 
 
 
a8c338d
e579fcc
 
51efef6
 
f774200
1dd6469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793b98
5d5059e
4793b98
 
 
 
 
 
7dbced5
 
 
4793b98
dcb53fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import gradio as gr
from video_processing import process_video
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable


class CustomTheme(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.orange,
        secondary_hue: colors.Color | str = colors.orange,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_md,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Sora"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Sora"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="radial-gradient(circle at center, rgba(235, 87, 38, 1) 0%, rgba(235, 87, 38, 0) 70%), radial-gradient(#eb5726 1px, transparent 1px)",
            body_text_color="#282828",
            block_background_fill="#ffffff",
            block_title_text_color="#eb5726",
            block_label_text_color="#eb5726",
            button_primary_background_fill="#eb5726",
            button_primary_text_color="#ffffff",
        )

custom_theme = CustomTheme()

def save_uploaded_file(uploaded_file):
    print(f"Received object type: {type(uploaded_file)}")
    if uploaded_file is None:
        return None  # Handle cases where no file was uploaded
    
    if isinstance(uploaded_file, gr.NamedString):
        print(f"File path from NamedString: {uploaded_file}")
        return uploaded_file  # Directly return the path if it's a NamedString

    upload_dir = "uploaded_videos"
    os.makedirs(upload_dir, exist_ok=True)
    file_path = os.path.join(upload_dir, uploaded_file.name)

    # Save the temporary file to a new location
    with open(file_path, "wb") as f:
        f.write(uploaded_file.read())  # Assuming file is a file-like object
        f.flush()
        os.fsync(f.fileno())  # Ensure all file data is flushed to disk

    print(f"File saved to {file_path}, size: {os.path.getsize(file_path)} bytes")
    return file_path

def display_results(video_url, video_file, description):
    final_clip_path = None

    if video_url:
        final_clip_path = process_video(video_url, description, is_url=True)
    elif video_file:
        video_file_path = save_uploaded_file(video_file)
        if video_file_path:
            final_clip_path = process_video(video_file_path, description, is_url=False)
        else:
            return "No file provided or file save error", None

    if final_clip_path:
        return final_clip_path, final_clip_path
    else:
        return "No matching scene found", None

css = """
body {
    background-color: #ffffff;
    background-image: radial-gradient(#eb5726 1px, transparent 1px);
    background-size: 10px 10px;
    background-repeat: repeat;
    background-attachment: fixed;
}
#video_url {
    background-color: #ffffff;
    color: #282828;
    border: 2px solid #eb5726;
}
#description {
    background-color: #ffffff;
    color: #282828;
    border: 2px solid #eb5726;
}
#submit_button {
    background-color: #eb5726;
    color: #ffffff;
    border: 2px solid #ffffff;
}
#submit_button:hover {
    background-color: #f5986e;
    color: #ffffff;
    border: 2px solid #ffffff;
}
label[for="video_url"] {
    color: #eb5726 !important;
}
label[for="description"] {
    color: #eb5726 !important;
}
h3 {
    color: #eb5726;
}
.centered-markdown {
    text-align: center;
    background-color: #ffffff;
    padding: 10px;
}
#sickstadium-title {
    font-size: 3em !important;
    font-weight: bold;
    text-transform: uppercase;
}
"""

with gr.Blocks(theme=custom_theme, css=css) as demo:
    with gr.Column():
        gr.Markdown("# **Sickstadium AI**", elem_classes="centered-markdown", elem_id="sickstadium-title")
        gr.Markdown("### Upload your videos. Find sick clips. Tell your truth.", elem_classes="centered-markdown")
        gr.Markdown("**Welcome to Sickstadium AI. Our goal is to empower content creators with the ability to tell their stories without the friction of traditional video editing software. Skip the timeline, and don't worry about your video editing skills. Upload your video, describe the clip you want, and let our AI video editor do the work for you. Get more info about the Sickstadium project at [Strongholdlabs.io](https://strongholdlabs.io/)**", elem_classes="centered-markdown")
        video_url = gr.Textbox(label="Video URL:")
        video_file = gr.File(label="Upload Video File:")
        description = gr.Textbox(label="Describe your clip:")
        submit_button = gr.Button("Process Video")
        video_output = gr.Video(label="Processed Video")
        download_output = gr.File(label="Download Processed Video")
        submit_button.click(fn=display_results, inputs=[video_url, video_file, description], outputs=[video_output, download_output])

demo.launch()