#!/usr/bin/env python

"""A demo of the VitPose model.

This code is based on the implementation from the Colab notebook:
https://colab.research.google.com/drive/1e8fcby5rhKZWcr9LSN8mNbQ0TU4Dxxpo
"""

import pathlib
import tempfile

import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation

DESCRIPTION = "# ViTPose"

MAX_NUM_FRAMES = 300

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

person_detector_name = "PekingU/rtdetr_r50vd_coco_o365"
person_image_processor = AutoProcessor.from_pretrained(person_detector_name)
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device)

pose_model_name = "usyd-community/vitpose-base-simple"
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name)
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device)


@spaces.GPU(duration=5)
@torch.inference_mode()
def process_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]:
    inputs = person_image_processor(images=image, return_tensors="pt").to(device)
    outputs = person_model(**inputs)
    results = person_image_processor.post_process_object_detection(
        outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
    )
    result = results[0]  # take first image results

    # Human label refers 0 index in COCO dataset
    person_boxes_xyxy = result["boxes"][result["labels"] == 0]
    person_boxes_xyxy = person_boxes_xyxy.cpu().numpy()

    # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
    person_boxes = person_boxes_xyxy.copy()
    person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
    person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

    inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)

    # for vitpose-plus-base checkpoint we should additionally provide dataset_index
    # to specify which MOE experts to use for inference
    if pose_model.config.backbone_config.num_experts > 1:
        dataset_index = torch.tensor([0] * len(inputs["pixel_values"]))
        dataset_index = dataset_index.to(inputs["pixel_values"].device)
        inputs["dataset_index"] = dataset_index

    outputs = pose_model(**inputs)

    pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
    image_pose_result = pose_results[0]  # results for first image

    # make results more human-readable
    human_readable_results = []
    for i, person_pose in enumerate(image_pose_result):
        data = {
            "person_id": i,
            "bbox": person_pose["bbox"].numpy().tolist(),
            "keypoints": [],
        }
        for keypoint, label, score in zip(
            person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True
        ):
            keypoint_name = pose_model.config.id2label[label.item()]
            x, y = keypoint
            data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()})
        human_readable_results.append(data)

    # preprocess to torch tensor of shape (n_objects, n_keypoints, 2)
    xy = [pose_result["keypoints"] for pose_result in image_pose_result]
    xy = torch.stack(xy).cpu().numpy()

    scores = [pose_result["scores"] for pose_result in image_pose_result]
    scores = torch.stack(scores).cpu().numpy()

    keypoints = sv.KeyPoints(xy=xy, confidence=scores)
    detections = sv.Detections(xyxy=person_boxes_xyxy)

    edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1)
    vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2)
    bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1)

    annotated_frame = image.copy()

    # annotate bounding boxes
    annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections)

    # annotate edges and vertices
    annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints)
    return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results


@spaces.GPU(duration=90)
def process_video(
    video_path: str,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> str:
    cap = cv2.VideoCapture(video_path)

    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = cap.get(cv2.CAP_PROP_FPS)
    num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
        writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
        for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
            ok, frame = cap.read()
            if not ok:
                break
            rgb_frame = frame[:, :, ::-1]
            annotated_frame, _ = process_image(PIL.Image.fromarray(rgb_frame))
            writer.write(np.asarray(annotated_frame)[:, :, ::-1])
        writer.release()
    cap.release()
    return out_file.name


with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil")
                    run_button_image = gr.Button()
                with gr.Column():
                    output_image = gr.Image(label="Output Image")
                    output_json = gr.JSON(label="Output JSON")
            gr.Examples(
                examples=sorted(pathlib.Path("images").glob("*.jpg")),
                inputs=input_image,
                outputs=[output_image, output_json],
                fn=process_image,
            )

            run_button_image.click(
                fn=process_image,
                inputs=input_image,
                outputs=[output_image, output_json],
            )

        with gr.Tab("Video"):
            gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")

            with gr.Row():
                with gr.Column():
                    input_video = gr.Video(label="Input Video")
                    run_button_video = gr.Button()
                with gr.Column():
                    output_video = gr.Video(label="Output Video")

            gr.Examples(
                examples=sorted(pathlib.Path("videos").glob("*.mp4")),
                inputs=input_video,
                outputs=output_video,
                fn=process_video,
                cache_examples=False,
            )
            run_button_video.click(
                fn=process_video,
                inputs=input_video,
                outputs=output_video,
            )


if __name__ == "__main__":
    demo.queue(max_size=20).launch()