Spaces:
Runtime error
Runtime error
File size: 20,185 Bytes
0a2704b 4b77aea 8b18a0c 0a2704b 4b77aea 8b18a0c 4b77aea 0a2704b 4b77aea 0a2704b 8b18a0c 0a2704b 8b18a0c 0a2704b 8b18a0c 0a2704b 8b18a0c 0a2704b 8b18a0c 0a2704b 8b18a0c 0a2704b 4b77aea 0a2704b 8b18a0c 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 8b18a0c 4b77aea 0a2704b 4b77aea 0a2704b 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 8b18a0c 4b77aea 0a2704b 4b77aea 8b18a0c 0a2704b 8b18a0c 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 8b18a0c 4b77aea 8b18a0c 0a2704b 4b77aea 0a2704b 4b77aea 8b18a0c 0a2704b 4b77aea 8b18a0c 4b77aea 0a2704b 8b18a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import numpy as np
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import torch
import itertools
import os
import plotly.graph_objects as go
import hashlib
from PIL import Image
import json
os.environ["PYTHONHASHSEED"] = "42"
CUDA_AVAILABLE = torch.cuda.is_available()
print(f"CUDA={CUDA_AVAILABLE}")
device = "cuda" if CUDA_AVAILABLE else "cpu"
print(f"count={torch.cuda.device_count()}")
print(f"current={torch.cuda.get_device_name(torch.cuda.current_device())}")
continent_model = CLIPModel.from_pretrained("jrheiner/thesis-clip-geoloc-continent", token=os.getenv("token"))
country_model = CLIPModel.from_pretrained("jrheiner/thesis-clip-geoloc-country", token=os.getenv("token"))
processor = CLIPProcessor.from_pretrained("jrheiner/thesis-clip-geoloc-continent", token=os.getenv("token"))
continent_model = continent_model.to(device)
country_model = country_model.to(device)
continents = ["Africa", "Asia", "Europe",
"North America", "Oceania", "South America"]
countries_per_continent = {
"Africa": [
"Botswana", "Eswatini", "Ghana", "Kenya", "Lesotho", "Nigeria", "Senegal",
"South Africa", "Rwanda", "Uganda", "Tanzania", "Madagascar", "Djibouti",
"Mali", "Libya", "Morocco", "Somalia", "Tunisia", "Egypt", "RΓ©union"
],
"Asia": [
"Bangladesh", "Bhutan", "Cambodia", "China", "India", "Indonesia", "Israel",
"Japan", "Jordan", "Kyrgyzstan", "Laos", "Malaysia", "Mongolia", "Nepal",
"Palestine", "Philippines", "Singapore", "South Korea", "Sri Lanka",
"Taiwan", "Thailand", "United Arab Emirates", "Vietnam", "Afghanistan",
"Azerbaijan", "Cyprus", "Iran", "Syria", "Tajikistan", "Turkey", "Russia",
"Pakistan", "Hong Kong"
],
"Europe": [
"Albania", "Andorra", "Austria", "Belgium", "Bulgaria", "Croatia", "Czechia",
"Denmark", "Estonia", "Finland", "France", "Germany", "Greece", "Hungary",
"Iceland", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg",
"Montenegro", "Netherlands", "North Macedonia", "Norway", "Poland",
"Portugal", "Romania", "Russia", "Serbia", "Slovakia", "Slovenia", "Spain",
"Sweden", "Switzerland", "Ukraine", "United Kingdom", "Bosnia and Herzegovina",
"Cyprus", "Turkey", "Greenland", "Faroe Islands"
],
"North America": [
"Canada", "Dominican Republic", "Guatemala", "Mexico", "United States",
"Bahamas", "Cuba", "Panama", "Puerto Rico", "Bermuda", "Greenland"
],
"Oceania": [
"Australia", "New Zealand", "Fiji", "Papua New Guinea", "Solomon Islands", "Vanuatu"
],
"South America": [
"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Paraguay",
"Peru", "Uruguay"
]
}
countries = list(set(itertools.chain.from_iterable(
countries_per_continent.values())))
country_to_center_coords = {
"Indonesia": (-2.4833826, 117.8902853),
"Egypt": (26.2540493, 29.2675469),
"Dominican Republic": (19.0974031, -70.3028026),
"Russia": (64.6863136, 97.7453061),
"Denmark": (55.670249, 10.3333283),
"Latvia": (56.8406494, 24.7537645),
"Hong Kong": (22.350627, 114.1849161),
"Brazil": (-10.3333333, -53.2),
"Turkey": (38.9597594, 34.9249653),
"Paraguay": (-23.3165935, -58.1693445),
"Nigeria": (9.6000359, 7.9999721),
"United Kingdom": (54.7023545, -3.2765753),
"Argentina": (-34.9964963, -64.9672817),
"United Arab Emirates": (24.0002488, 53.9994829),
"Estonia": (58.7523778, 25.3319078),
"Greenland": (69.6354163, -42.1736914),
"Canada": (61.0666922, -107.991707),
"Andorra": (42.5407167, 1.5732033),
"Czechia": (49.7439047, 15.3381061),
"Australia": (-24.7761086, 134.755),
"Azerbaijan": (40.3936294, 47.7872508),
"Cambodia": (12.5433216, 104.8144914),
"Peru": (-6.8699697, -75.0458515),
"Slovakia": (48.7411522, 19.4528646),
"RΓ©union": (-21.130737949999997, 55.536480112992315),
"France": (46.603354, 1.8883335),
"Israel": (30.8124247, 34.8594762),
"China": (35.000074, 104.999927),
"Ecuador": (-1.3397668, -79.3666965),
"Poland": (52.215933, 19.134422),
"Switzerland": (46.7985624, 8.2319736),
"Singapore": (1.357107, 103.8194992),
"Kenya": (1.4419683, 38.4313975),
"Bhutan": (27.549511, 90.5119273),
"Laos": (20.0171109, 103.378253),
"Vietnam": (15.9266657, 107.9650855),
"Puerto Rico": (18.2247706, -66.4858295),
"Germany": (51.1638175, 10.4478313),
"Tanzania": (-6.5247123, 35.7878438),
"Colombia": (4.099917, -72.9088133),
"Italy": (42.6384261, 12.674297),
"Bahamas": (24.7736546, -78.0000547),
"Panama": (8.559559, -81.1308434),
"Bulgaria": (42.6073975, 25.4856617),
"Solomon Islands": (-8.7053941, 159.1070693851845),
"Afghanistan": (33.7680065, 66.2385139),
"Tajikistan": (38.6281733, 70.8156541),
"Portugal": (39.6621648, -8.1353519),
"Tunisia": (36.8002068, 10.1857757),
"Bolivia": (-17.0568696, -64.9912286),
"Malaysia": (4.5693754, 102.2656823),
"Lithuania": (55.3500003, 23.7499997),
"Sweden": (59.6749712, 14.5208584),
"Belgium": (50.6402809, 4.6667145),
"Libya": (26.8234472, 18.1236723),
"Guatemala": (15.5855545, -90.345759),
"India": (22.3511148, 78.6677428),
"Sri Lanka": (7.5554942, 80.7137847),
"New Zealand": (-41.5000831, 172.8344077),
"Iceland": (64.9841821, -18.1059013),
"Somalia": (8.3676771, 49.083416),
"Croatia": (45.3658443, 15.6575209),
"Bosnia and Herzegovina": (44.3053476, 17.5961467),
"Greece": (38.9953683, 21.9877132),
"Rwanda": (-1.9646631, 30.0644358),
"Hungary": (47.1817585, 19.5060937),
"Eswatini": (-26.5624806, 31.3991317),
"Kyrgyzstan": (41.5089324, 74.724091),
"Bangladesh": (23.6943117, 90.344352),
"Morocco": (28.3347722, -10.371337908392647),
"Finland": (63.2467777, 25.9209164),
"Luxembourg": (49.6112768, 6.129799),
"North Macedonia": (41.6171214, 21.7168387),
"Uruguay": (-32.8755548, -56.0201525),
"Chile": (-31.7613365, -71.3187697),
"Spain": (39.3260685, -4.8379791),
"South Korea": (36.638392, 127.6961188),
"Botswana": (-23.1681782, 24.5928742),
"Uganda": (1.5333554, 32.2166578),
"Papua New Guinea": (-5.6816069, 144.2489081),
"Mali": (16.3700359, -2.2900239),
"Philippines": (12.7503486, 122.7312101),
"Norway": (64.5731537, 11.52803643954819),
"Thailand": (14.8971921, 100.83273),
"Mongolia": (46.8651082, 103.8347844),
"Japan": (36.5748441, 139.2394179),
"Montenegro": (42.7044223, 19.3957785),
"Austria": (47.59397, 14.12456),
"Taiwan": (23.6978, 120.9605),
"Netherlands": (52.2434979, 5.6343227),
"Ukraine": (49.4871968, 31.2718321),
"Fiji": (-18.1239696, 179.0122737),
"Ghana": (8.0300284, -1.0800271),
"Cuba": (23.0131338, -80.8328748),
"Nepal": (28.3780464, 83.9999901),
"Faroe Islands": (62.0448724, -7.0322972),
"Slovenia": (46.1199444, 14.8153333),
"Cyprus": (34.9174159, 32.889902651331866),
"Serbia": (44.024322850000004, 21.07657433209902),
"Madagascar": (-18.9249604, 46.4416422),
"Pakistan": (30.3308401, 71.247499),
"Syria": (34.6401861, 39.0494106),
"Iran": (32.6475314, 54.5643516),
"Ireland": (52.865196, -7.9794599),
"South Africa": (-28.8166236, 24.991639),
"Albania": (41.1529058, 20.1605717),
"Lesotho": (-29.6039267, 28.3350193),
"Romania": (45.9852129, 24.6859225),
"Palestine": (31.947351, 35.227163),
"Vanuatu": (-16.5255069, 168.1069154),
"Mexico": (19.4326296, -99.1331785),
"Jordan": (31.279862, 37.1297454),
"Djibouti": (11.8145966, 42.8453061),
"Senegal": (14.4750607, -14.4529612),
"Bermuda": (32.3040273, -64.7563086),
"United States": (39.7837304, -100.445882)
}
INTIAL_VERSUS_IMAGE = "versus_images/Europe_Germany_49.069183_10.319444_im2gps3k.jpg"
INITAL_VERSUS_STATE = {
"image": INTIAL_VERSUS_IMAGE,
"continent": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[0],
"country": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[1],
"lat": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[2],
"lon": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[3],
"score": {
"HUMAN": 0,
"AI": 0
},
"idx": 0
}
def predict(input_img):
inputs = processor(text=[f"A photo from {
geo}." for geo in continents], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = continent_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
continent_probs = {label: prob for label,
prob in zip(continents, probs.tolist()[0])}
model_continent = continents[pred_id]
predicted_continent_countries = countries_per_continent[model_continent]
inputs = processor(text=[f"A photo from {
geo}." for geo in predicted_continent_countries], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = country_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
model_country = predicted_continent_countries[pred_id]
country_probs = {label: prob for label, prob in zip(
predicted_continent_countries, probs.tolist()[0])}
hash = hashlib.sha1(np.asarray(input_img).data.tobytes()).hexdigest()
metadata_block = gr.Accordion(visible=False)
metadata_map = None
if hash in EXAMPLE_METADATA.keys():
model_result = ""
if model_continent == EXAMPLE_METADATA[hash]['continent'] and model_country == EXAMPLE_METADATA[hash]['country']:
model_result = "The AI π€ correctly guessed continent and country β
β
."
elif model_continent == EXAMPLE_METADATA[hash]['continent']:
model_result = "The AI π€ only guessed the correct continent β β
."
elif model_country == EXAMPLE_METADATA[hash]['country'] and model_continent != EXAMPLE_METADATA[hash]['continent']:
model_result = "The AI π€ only guessed the correct country β
β."
else:
model_result = "The AI π€ failed to guess country and continent β β."
metadata_block = gr.Accordion(visible=True, label=f"This photo was taken in {EXAMPLE_METADATA[hash]['country']}, {EXAMPLE_METADATA[hash]['continent']}.\n{model_result}")
metadata_map = make_versus_map(None, model_country, EXAMPLE_METADATA[hash])
return continent_probs, country_probs, metadata_block, metadata_map
def make_versus_map(human_country, model_country, versus_state):
if human_country:
human_coordinates = country_to_center_coords[human_country]
else:
human_coordinates = (None, None)
model_coordinates = country_to_center_coords[model_country]
fig = go.Figure()
fig.add_trace(go.Scattermapbox(
lon=[versus_state["lon"]],
lat=[versus_state["lat"]],
text=[f"π· Photo taken in {versus_state['country']}, {
versus_state['continent']}"],
mode='markers',
hoverinfo='text',
marker=dict(size=14, color='#0C5DA5'),
showlegend=True,
name="π· Photo Location"
))
if human_country == model_country:
fig.add_trace(go.Scattermapbox(
lat=[human_coordinates[0], model_coordinates[0]],
lon=[human_coordinates[1], model_coordinates[1]],
text=f"π§ π€ Human & AI guess {human_country}",
mode='markers',
hoverinfo='text',
marker=dict(size=14, color='#FF9500'),
showlegend=True,
name="π§ π€ Human & AI Guess"
))
else:
if human_country:
fig.add_trace(go.Scattermapbox(
lat=[human_coordinates[0]],
lon=[human_coordinates[1]],
text=[f"π§ Human guesses {human_country}"],
mode='markers',
hoverinfo='text',
marker=dict(size=14, color='#FF9500'),
showlegend=True,
name="π§ Human Guess"
))
fig.add_trace(go.Scattermapbox(
lat=[model_coordinates[0]],
lon=[model_coordinates[1]],
text=[f"π€ AI guesses {model_country}"],
mode='markers',
hoverinfo='text',
marker=dict(size=14, color='#474747'),
showlegend=True,
name="π€ AI Guess"
))
fig.update_layout(
mapbox=dict(
style="carto-positron",
center=dict(lat=float(versus_state["lat"]), lon=float(versus_state["lon"])),
zoom=2
),
margin={"r": 0, "t": 0, "l": 0, "b": 0},
legend=dict(
yanchor="bottom",
y=0.01,
xanchor="left",
x=0.01
)
)
return fig
def versus_mode_inputs(input_img, human_continent, human_country, versus_state):
human_points = 0
model_points = 0
if human_country == versus_state["country"]:
country_result = "β
"
human_points += 2
else:
country_result = "β"
if human_continent == versus_state["continent"]:
continent_result = "β
"
human_points += 1
else:
continent_result = "β"
human_result = f"The photo is from **{versus_state['country']}** {
country_result} in **{versus_state['continent']}** {continent_result}"
human_score_update = f"+{human_points} points" if human_points > 0 else "0 Points..."
versus_state['score']['HUMAN'] += human_points
continent_probs, country_probs, _,_ = predict(input_img)
model_country = max(country_probs, key=country_probs.get)
model_continent = max(continent_probs, key=continent_probs.get)
if model_country == versus_state["country"]:
model_country_result = "β
"
model_points += 2
else:
model_country_result = "β"
if model_continent == versus_state["continent"]:
model_continent_result = "β
"
model_points += 1
else:
model_continent_result = "β"
model_score_update = f"+{model_points} points" if model_points > 0 else "0 Points... The model was completely wrong, it seems the world is not doomed yet."
versus_state['score']['AI'] += model_points
map = make_versus_map(human_country, model_country, versus_state)
return f"""
## {human_result}
### The AI π€ thinks this photo is from **{model_country}** {model_country_result} in **{model_continent}** {model_continent_result}
π§ {human_score_update}
π€ {model_score_update}
### Score π§ {versus_state['score']['HUMAN']} : {versus_state['score']['AI']} π€
""", continent_probs, country_probs, map, versus_state
def get_example_images(dir):
image_extensions = (".jpg", ".jpeg", ".png")
image_files = []
for root, dirs, files in os.walk(dir):
for file in files:
if file.lower().endswith(image_extensions):
image_files.append(os.path.join(root, file))
return image_files
def next_versus_image(versus_state):
images = get_example_images("versus_images")
versus_state["idx"] += 1
if versus_state["idx"] > len(images):
versus_state["idx"] = 0
versus_image = images[versus_state["idx"]]
versus_state["continent"] = versus_image.split("/")[-1].split("_")[0]
versus_state["country"] = versus_image.split("/")[-1].split("_")[1]
versus_state["lat"] = versus_image.split("/")[-1].split("_")[2]
versus_state["lon"] = versus_image.split("/")[-1].split("_")[3]
versus_state["image"] = versus_image
return versus_image, versus_state, None, None
example_images = get_example_images("kerger-test-images")
EXAMPLE_METADATA = {}
for img_path in example_images:
hash = hashlib.sha1(np.asarray(Image.open(img_path)).data.tobytes()).hexdigest()
EXAMPLE_METADATA[hash] = {
"continent": img_path.split("/")[-1].split("_")[0],
"country": img_path.split("/")[-1].split("_")[1],
"lat": img_path.split("/")[-1].split("_")[2],
"lon": img_path.split("/")[-1].split("_")[3],
}
demo = gr.Blocks(title="Thesis Demo")
with demo:
gr.HTML("""
<h1 style="text-align: center; margin-bottom: 1rem">Image Geolocation Thesis Demo</h1>
<h3> This Demo showcases the developed models and allows interacting with the optimized prototype.</h3>
<p>Try the <b>"Image Geolocation Demo"</b> tab with your own images or with one of the examples. For all example image the ground truth is available and will be displayed together with the model predictions.</p>
<p>In the <b>"Versus Mode"</b> tab to play against the AI, guessing the country and continent where images where taken. Images in the versus mode are from the <a href="http://graphics.cs.cmu.edu/projects/im2gps/"><code>Im2GPS</code></a> and <a href="https://arxiv.org/abs/1705.04838"><code>Im2GPS3k</code></a> geolocation literature benchmarks. Can you beat the AI?
""")
with gr.Accordion(label="The demo currently encompasses 116 countries from 6 continents π", open=False):
gr.Code(json.dumps(countries_per_continent, indent=2, ensure_ascii=False), label="countries_per_continent.json", language="json", interactive=False)
with gr.Tab("Image Geolocation Demo"):
with gr.Row():
with gr.Column():
image = gr.Image(label="Image", type="pil",
sources=["upload", "clipboard"])
predict_btn = gr.Button("Predict")
example_images = get_example_images("kerger-test-images")
# example_images.extend(get_example_images("versus_images"))
gr.Examples(examples=example_images,
inputs=image, examples_per_page=24)
with gr.Column():
with gr.Accordion(visible=False) as metadata_block:
map = gr.Plot(label="Locations")
with gr.Group():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
predict_btn.click(predict, inputs=image, outputs=[
continents_label, country_label, metadata_block, map])
with gr.Tab("Versus Mode"):
versus_state = gr.State(value=INITAL_VERSUS_STATE)
with gr.Row():
with gr.Column():
versus_image = gr.Image(
INITAL_VERSUS_STATE["image"], interactive=False)
continent_selection = gr.Radio(
continents, label="Continents", info="Where was this image taken? (1 Point)")
country_selection = gr.Dropdown(countries, label="Countries", info="Can you guess the exact country? (2 Points)"),
with gr.Row():
next_img_btn = gr.Button("Try new image")
versus_btn = gr.Button("Submit guess")
with gr.Column():
versus_output = gr.Markdown()
# with gr.Accordion("View Map", open=False):
map = gr.Plot(label="Locations")
with gr.Accordion("Full Model Output", open=False):
with gr.Group():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
next_img_btn.click(next_versus_image, inputs=[versus_state], outputs=[
versus_image, versus_state, continent_selection, country_selection[0]])
versus_btn.click(versus_mode_inputs, inputs=[versus_image, continent_selection, country_selection[0], versus_state], outputs=[
versus_output, continents_label, country_label, map, versus_state])
if __name__ == "__main__":
demo.launch(show_api=False)
|