jattokatarratto commited on
Commit
6beb2f0
·
verified ·
1 Parent(s): e2d7571

Create common.py

Browse files
Files changed (1) hide show
  1. common.py +235 -0
common.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import re
3
+ import numpy as np
4
+
5
+ import tiktoken
6
+ from langchain.text_splitter import TokenTextSplitter
7
+
8
+ def strtobool(val):
9
+ val = val.lower()
10
+ if val in ('yes', 'true', 't', '1'):
11
+ return True
12
+ elif val in ('no', 'false', 'f', '0'):
13
+ return False
14
+ else:
15
+ raise ValueError(f"Invalid truth value {val}")
16
+
17
+
18
+ def split_camel_case(word):
19
+ # This regular expression pattern matches the transition from a lowercase letter to an uppercase letter
20
+ pattern = re.compile(r'(?<=[a-z])(?=[A-Z])')
21
+
22
+ # Replace the matched pattern (the empty string between lowercase and uppercase letters) with a space
23
+ split_word = pattern.sub(' ', word)
24
+
25
+ return split_word
26
+
27
+
28
+ # Function to split tokens into chunks
29
+ def chunk_tokens(tokens, max_len):
30
+ for i in range(0, len(tokens), max_len):
31
+ yield tokens[i:i + max_len]
32
+
33
+
34
+ def update_nested_dict(d, u):
35
+ for k, v in u.items():
36
+ if isinstance(v, dict):
37
+ d[k] = update_nested_dict(d.get(k, {}), v)
38
+ else:
39
+ d[k] = v
40
+ return d
41
+
42
+
43
+ def cleanInputText(textInputLLM):
44
+
45
+ # Sequentially applying all the replacements and cleaning operations on textInputLLM
46
+
47
+ # Using regular expressions substitution
48
+ textInputLLM = re.sub(r'\(\'\\n\\n', ' ', textInputLLM)
49
+ textInputLLM = re.sub(r'\(\"\\n\\n', ' ', textInputLLM)
50
+ textInputLLM = re.sub(r'\\n\\n\',\)', ' ', textInputLLM)
51
+ textInputLLM = re.sub(r'\\n\\n\",\)', ' ', textInputLLM)
52
+
53
+ # Applying replacements with while loops since we need repetition until conditions are met
54
+ while re.search(r'##\n', textInputLLM):
55
+ textInputLLM = re.sub(r"##\n", '. ', textInputLLM)
56
+ while '###' in textInputLLM:
57
+ textInputLLM = textInputLLM.replace("###", ' ')
58
+ while '##' in textInputLLM:
59
+ textInputLLM = textInputLLM.replace("##", ' ')
60
+ while ' # ' in textInputLLM:
61
+ textInputLLM = textInputLLM.replace(" # ", ' ')
62
+ while '--' in textInputLLM:
63
+ textInputLLM = textInputLLM.replace("--", '-')
64
+ while re.search(r'\\\\-', textInputLLM):
65
+ textInputLLM = re.sub(r"\\\\-", '.', textInputLLM)
66
+ while re.search(r'\*\*\n', textInputLLM):
67
+ textInputLLM = re.sub(r"\*\*\n", '. ', textInputLLM)
68
+ while re.search(r'\*\*\*', textInputLLM):
69
+ textInputLLM = re.sub(r"\*\*\*", ' ', textInputLLM)
70
+ while re.search(r'\*\*', textInputLLM):
71
+ textInputLLM = re.sub(r"\*\*", ' ', textInputLLM)
72
+ while re.search(r' \* ', textInputLLM):
73
+ textInputLLM = re.sub(r" \* ", ' ', textInputLLM)
74
+ while re.search(r'is a program of the\n\nInternational Society for Infectious Diseases', textInputLLM):
75
+ textInputLLM = re.sub(
76
+ r'is a program of the\n\nInternational Society for Infectious Diseases',
77
+ 'is a program of the International Society for Infectious Diseases',
78
+ textInputLLM,
79
+ flags=re.M
80
+ )
81
+
82
+ # Optionally, if you want to include these commented out operations:
83
+ # while re.search(r'\n\n', textInputLLM):
84
+ # textInputLLM = re.sub(r'\n\n', '. ', textInputLLM)
85
+ # while re.search(r'\n', textInputLLM):
86
+ # textInputLLM = re.sub(r'\n', ' ', textInputLLM)
87
+
88
+ while re.search(r' \*\.', textInputLLM):
89
+ textInputLLM = re.sub(r' \*\.', ' .', textInputLLM)
90
+ while ' ' in textInputLLM:
91
+ textInputLLM = textInputLLM.replace(" ", ' ')
92
+ while re.search(r'\.\.', textInputLLM):
93
+ textInputLLM = re.sub(r'\.\.', '.', textInputLLM)
94
+ while re.search(r'\. \.', textInputLLM):
95
+ textInputLLM = re.sub(r'\. \.', '.', textInputLLM)
96
+
97
+ # Final cleanup replacements
98
+ textInputLLM = re.sub(r'\(\"\.', ' ', textInputLLM)
99
+ textInputLLM = re.sub(r'\(\'\.', ' ', textInputLLM)
100
+ textInputLLM = re.sub(r'\",\)', ' ', textInputLLM)
101
+ textInputLLM = re.sub(r'\',\)', ' ', textInputLLM)
102
+
103
+ # Strip leading/trailing whitespaces
104
+ textInputLLM = textInputLLM.strip()
105
+
106
+ return textInputLLM
107
+
108
+
109
+
110
+ def encoding_getter(encoding_type: str):
111
+ """
112
+ Returns the appropriate encoding based on the given encoding type (either an encoding string or a model name).
113
+
114
+ tiktoken supports three encodings used by OpenAI models:
115
+
116
+ Encoding name OpenAI models
117
+ cl100k_base gpt-4, gpt-3.5-turbo, text-embedding-ada-002
118
+ p50k_base Codex models, text-davinci-002, text-davinci-003
119
+ r50k_base (or gpt2) GPT-3 models like davinci
120
+
121
+ https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
122
+
123
+ """
124
+ if "k_base" in encoding_type:
125
+ return tiktoken.get_encoding(encoding_type)
126
+ else:
127
+ try:
128
+ my_enc = tiktoken.encoding_for_model(encoding_type)
129
+ return my_enc
130
+ except Exception as err:
131
+ my_enc = tiktoken.get_encoding("cl100k_base") #default for gpt-4, gpt-3.5-turbo
132
+ return my_enc
133
+
134
+
135
+ def tokenizer(string: str, encoding_type: str) -> list:
136
+ """
137
+ Returns the tokens in a text string using the specified encoding.
138
+ """
139
+ encoding = encoding_getter(encoding_type)
140
+ tokens = encoding.encode(string)
141
+ return tokens
142
+
143
+
144
+ def token_counter(string: str, encoding_type: str) -> int:
145
+ """
146
+ Returns the number of tokens in a text string using the specified encoding.
147
+ """
148
+ num_tokens = len(tokenizer(string, encoding_type))
149
+ return num_tokens
150
+
151
+
152
+ # Function to extract words from a given text
153
+ def extract_words(text, putInLower=False):
154
+ # Use regex to find all words (sequences of alphanumeric characters)
155
+ if putInLower:
156
+ return [word.lower() for word in re.findall(r'\b\w+\b', text)]
157
+ else:
158
+ return [word for word in re.findall(r'\b\w+\b', text)] #re.findall(r'\b\w+\b', text)
159
+
160
+ # Function to check if all words from 'compound_word' are in the 'word_list'
161
+ def all_words_in_list(compound_word, word_list, putInLower=False):
162
+ words_to_check = extract_words(compound_word, putInLower=putInLower)
163
+ if putInLower:
164
+ return all(word.lower() in word_list for word in words_to_check)
165
+ else:
166
+ return all(word in word_list for word in words_to_check)
167
+
168
+
169
+ def row_to_dict_string(rrrow, columnsDict):
170
+ formatted_items = []
171
+ for col in rrrow.index:
172
+ if col not in columnsDict:
173
+ continue
174
+ value = rrrow[col]
175
+ # Check if the value is an instance of a number (int, float, etc.)
176
+ if isinstance(value, (int, float)):
177
+ formatted_items.append(f'"{col}": {value}') # Use double quotes for keys
178
+ else:
179
+ formatted_items.append(
180
+ f'"{col}": "{value}"') # Use double quotes for keys and string values
181
+ # Join items and enclose them in {}
182
+ return '{' + ', '.join(formatted_items) + '}'
183
+
184
+ #
185
+ # def row_to_dict_string(rrrow):
186
+ # formatted_items = []
187
+ # for col in rrrow.index:
188
+ # value = rrrow[col]
189
+ # # Check if the value is an instance of a number (int, float, etc.)
190
+ # if isinstance(value, (int, float)):
191
+ # formatted_items.append(f"'{col}': {value}")
192
+ # else:
193
+ # formatted_items.append(f"'{col}': '{value}'")
194
+ # # Join items and enclose them in {}
195
+ # return '{' + ', '.join(formatted_items) + '}'
196
+
197
+
198
+ def rescale_exponential_to_linear(df, column, new_min=0.5, new_max=1.0):
199
+ # Get the original exponential scores
200
+ original_scores = df[column]
201
+
202
+ # Normalize the scores to a 0-1 range
203
+ min_score = original_scores.min()
204
+ max_score = original_scores.max()
205
+ normalized_scores = (original_scores - min_score) / (max_score - min_score)
206
+
207
+ # Rescale the normalized scores to the interval [0.5, 1.0]
208
+ linear_scores = new_min + (normalized_scores * (new_max - new_min))
209
+
210
+ # Assign the linear scores back to the dataframe
211
+ df[column] = linear_scores
212
+
213
+ return df
214
+
215
+
216
+ def rescale_exponential_to_logarithmic(df, column, new_min=0.5, new_max=1.0):
217
+ # Ensure all values are positive and greater than zero, because log(0) is undefined
218
+ epsilon = 1e-10
219
+ df[column] = df[column] + epsilon
220
+
221
+ # Apply logarithmic transformation
222
+ log_transformed_scores = np.log(df[column])
223
+
224
+ # Normalize the log-transformed scores to a 0-1 range
225
+ min_score = log_transformed_scores.min()
226
+ max_score = log_transformed_scores.max()
227
+ normalized_log_scores = (log_transformed_scores - min_score) / (max_score - min_score)
228
+
229
+ # Rescale the normalized scores to the interval [0.5, 1.0]
230
+ logarithmic_scores = new_min + (normalized_log_scores * (new_max - new_min))
231
+
232
+ # Assign the logarithmically scaled scores back to the dataframe
233
+ df[column] = logarithmic_scores
234
+
235
+ return df