"""Accuracy metric.""" import datasets import numpy as np from skimage.metrics import peak_signal_noise_ratio from typing import Dict, Optional import evaluate _DESCRIPTION = """ Compute the Peak Signal-to-Noise Ratio (PSNR) for an image. Please pay attention to the `data_range` parameter with floating-point images. """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `np.array`): Predicted labels. references (`list` of `np.array`): Ground truth labels. sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: psnr (`float`):Peak Signal-to-Noise Ratio. The SSIM values are positive. Typical values for the PSNR in lossy image and video compression are between 30 and 50 dB, provided the bit depth is 8 bits, where higher is better. Examples: Example 1-A simple example >>> psnr = evaluate.load("jpxkqx/peak_signal_to_noise_ratio") >>> results = psnr.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) >>> print(results) {'psnr': 0.5} Example 2-The same as Example 1, except with `sample_weight` set. >>> psnr = evaluate.load("jpxkqx/peak_signal_to_noise_ratio") >>> results = psnr.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4]) >>> print(results) {'psnr': 0.8778625954198473} """ _CITATION = """ @article{boulogne2014scikit, title={Scikit-image: Image processing in Python}, author={Boulogne, Fran{\c{c}}ois and Warner, Joshua D and Neil Yager, Emmanuelle}, journal={J. PeerJ}, volume={2}, pages={453}, year={2014} } """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class StructuralSimilarityIndexMeasure(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features({ "predictions": datasets.Sequence(datasets.Array2D("float32")), "references": datasets.Sequence(datasets.Array2D("float32")), }), reference_urls=["https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio"], ) def _compute( self, predictions, references, data_range: Optional[float] = None, sample_weight=None, ) -> Dict[str, float]: samples = zip(predictions, references) return { "psnr": np.average( list(map( lambda args: peak_signal_noise_ratio(*args, data_range), samples )), weights=sample_weight ) }