|
import json |
|
import math |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from loguru import logger |
|
from torch import Tensor |
|
from torch.nn import functional as F |
|
from torch.nn.attention import SDPBackend, sdpa_kernel |
|
from torch.utils.checkpoint import checkpoint |
|
from transformers import AutoTokenizer |
|
|
|
from fish_speech.conversation import SEMANTIC_TOKEN |
|
from fish_speech.utils import RankedLogger |
|
|
|
from .lora import LoraConfig, setup_lora |
|
|
|
log = RankedLogger(__name__, rank_zero_only=True) |
|
|
|
|
|
def find_multiple(n: int, k: int) -> int: |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|
|
|
|
@dataclass |
|
class BaseModelArgs: |
|
model_type: str = "base" |
|
|
|
vocab_size: int = 32000 |
|
n_layer: int = 32 |
|
n_head: int = 32 |
|
dim: int = 4096 |
|
intermediate_size: int = None |
|
n_local_heads: int = -1 |
|
head_dim: int = 64 |
|
rope_base: float = 10000 |
|
norm_eps: float = 1e-5 |
|
max_seq_len: int = 2048 |
|
dropout: float = 0.0 |
|
tie_word_embeddings: bool = True |
|
attention_qkv_bias: bool = False |
|
|
|
|
|
codebook_size: int = 160 |
|
num_codebooks: int = 4 |
|
|
|
|
|
use_gradient_checkpointing: bool = True |
|
|
|
|
|
initializer_range: float = 0.02 |
|
|
|
def __post_init__(self): |
|
if self.n_local_heads == -1: |
|
self.n_local_heads = self.n_head |
|
if self.intermediate_size is None: |
|
hidden_dim = 4 * self.dim |
|
n_hidden = int(2 * hidden_dim / 3) |
|
self.intermediate_size = find_multiple(n_hidden, 256) |
|
self.head_dim = self.dim // self.n_head |
|
|
|
@staticmethod |
|
def from_pretrained(path: str): |
|
path = Path(path) |
|
|
|
if path.is_dir(): |
|
path = path / "config.json" |
|
|
|
with open(path, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
match data["model_type"]: |
|
case "naive": |
|
cls = NaiveModelArgs |
|
case "dual_ar": |
|
cls = DualARModelArgs |
|
case _: |
|
raise ValueError(f"Unknown model type: {data['model_type']}") |
|
|
|
return cls(**data) |
|
|
|
def save(self, path: str): |
|
with open(path, "w") as f: |
|
json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False) |
|
|
|
|
|
@dataclass |
|
class NaiveModelArgs(BaseModelArgs): |
|
model_type: str = "naive" |
|
|
|
|
|
@dataclass |
|
class DualARModelArgs(BaseModelArgs): |
|
model_type: str = "dual_ar" |
|
n_fast_layer: int = 4 |
|
|
|
|
|
class KVCache(nn.Module): |
|
def __init__( |
|
self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16 |
|
): |
|
super().__init__() |
|
cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim) |
|
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) |
|
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) |
|
|
|
def update(self, input_pos, k_val, v_val): |
|
|
|
assert input_pos.shape[0] == k_val.shape[2] |
|
|
|
k_out = self.k_cache |
|
v_out = self.v_cache |
|
k_out[:, :, input_pos] = k_val |
|
v_out[:, :, input_pos] = v_val |
|
|
|
return k_out, v_out |
|
|
|
|
|
@dataclass |
|
class TransformerForwardResult: |
|
token_logits: Tensor |
|
codebook_logits: Tensor |
|
|
|
|
|
@dataclass |
|
class BaseTransformerForwardResult: |
|
logits: Tensor |
|
hidden_states: Tensor |
|
|
|
|
|
class BaseTransformer(nn.Module): |
|
def __init__( |
|
self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True |
|
) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.tokenizer = tokenizer |
|
|
|
self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN) |
|
|
|
|
|
self.embeddings = nn.Embedding( |
|
config.vocab_size, |
|
config.dim, |
|
) |
|
self.codebook_embeddings = nn.Embedding( |
|
config.codebook_size * config.num_codebooks, |
|
config.dim, |
|
) |
|
self.layers = nn.ModuleList( |
|
TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer) |
|
) |
|
self.norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
|
|
if self.config.tie_word_embeddings is False: |
|
self.output = nn.Linear( |
|
config.dim, |
|
config.vocab_size, |
|
bias=False, |
|
) |
|
|
|
self.register_buffer( |
|
"freqs_cis", |
|
precompute_freqs_cis( |
|
config.max_seq_len, |
|
config.dim // config.n_head, |
|
config.rope_base, |
|
), |
|
persistent=False, |
|
) |
|
self.register_buffer( |
|
"causal_mask", |
|
torch.tril( |
|
torch.ones( |
|
config.max_seq_len, |
|
config.max_seq_len, |
|
dtype=torch.bool, |
|
) |
|
), |
|
persistent=False, |
|
) |
|
|
|
|
|
self.max_batch_size = -1 |
|
self.max_seq_len = -1 |
|
|
|
if init_weights: |
|
self.apply(self._init_weights) |
|
|
|
def setup_caches( |
|
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 |
|
): |
|
if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size: |
|
return |
|
|
|
head_dim = self.config.dim // self.config.n_head |
|
max_seq_len = find_multiple(max_seq_len, 8) |
|
self.max_seq_len = max_seq_len |
|
self.max_batch_size = max_batch_size |
|
|
|
for b in self.layers: |
|
b.attention.kv_cache = KVCache( |
|
max_batch_size, |
|
max_seq_len, |
|
self.config.n_local_heads, |
|
head_dim, |
|
dtype=dtype, |
|
) |
|
|
|
def embed(self, x: Tensor) -> Tensor: |
|
vocab_embeds = [self.embeddings(x[:, 0])] |
|
for i in range(self.config.num_codebooks): |
|
emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size) |
|
emb[x[:, 0] != self.semantic_token_id] = 0 |
|
vocab_embeds.append(emb) |
|
|
|
x = torch.stack(vocab_embeds, dim=3) |
|
x = x.sum(dim=3) |
|
|
|
return x |
|
|
|
def forward( |
|
self, |
|
inp: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
) -> BaseTransformerForwardResult: |
|
seq_len = inp.size(2) |
|
|
|
|
|
x = self.embed(inp) |
|
|
|
freqs_cis = self.freqs_cis[:seq_len] |
|
|
|
|
|
|
|
|
|
mask = None |
|
if key_padding_mask is not None: |
|
mask = self.causal_mask[None, None, :seq_len, :seq_len] |
|
mask = mask & key_padding_mask[:, None, None, :].logical_not() |
|
|
|
for layer in self.layers: |
|
if self.config.use_gradient_checkpointing and self.training: |
|
x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True) |
|
else: |
|
x = layer(x, freqs_cis, mask) |
|
|
|
|
|
slow_out = self.norm(x) |
|
|
|
if self.config.tie_word_embeddings: |
|
token_logits = F.linear(slow_out, self.embeddings.weight) |
|
else: |
|
token_logits = self.output(slow_out) |
|
|
|
return BaseTransformerForwardResult( |
|
logits=token_logits, |
|
hidden_states=x, |
|
) |
|
|
|
def forward_generate( |
|
self, |
|
x: Tensor, |
|
input_pos: Optional[Tensor] = None, |
|
return_all: bool = False, |
|
) -> BaseTransformerForwardResult: |
|
|
|
assert ( |
|
self.max_seq_len != -1 and self.max_batch_size != -1 |
|
), "Please call setup_caches before forward_generate" |
|
|
|
x = self.embed(x) |
|
|
|
mask = self.causal_mask[ |
|
None, None, input_pos, : self.max_seq_len |
|
] |
|
freqs_cis = self.freqs_cis[input_pos] |
|
|
|
for layer in self.layers: |
|
x = layer(x, freqs_cis, mask, input_pos=input_pos) |
|
|
|
|
|
if x.size(1) > 1 and not return_all: |
|
x = x[:, -1:] |
|
|
|
|
|
slow_out = self.norm(x) |
|
|
|
if self.config.tie_word_embeddings: |
|
token_logits = F.linear(slow_out, self.embeddings.weight) |
|
else: |
|
token_logits = self.output(slow_out) |
|
|
|
return BaseTransformerForwardResult( |
|
logits=token_logits, |
|
hidden_states=x, |
|
) |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@staticmethod |
|
def from_pretrained( |
|
path: str, |
|
load_weights: bool = False, |
|
max_length: int | None = None, |
|
lora_config: LoraConfig | None = None, |
|
rope_base: int | None = None, |
|
) -> "BaseTransformer": |
|
config = BaseModelArgs.from_pretrained(str(path)) |
|
if max_length is not None: |
|
config.max_seq_len = max_length |
|
log.info(f"Override max_seq_len to {max_length}") |
|
|
|
if rope_base is not None: |
|
config.rope_base = rope_base |
|
log.info(f"Override rope_base to {rope_base}") |
|
|
|
match config.model_type: |
|
case "naive": |
|
model_cls = NaiveTransformer |
|
case "dual_ar": |
|
model_cls = DualARTransformer |
|
case _: |
|
raise ValueError(f"Unknown model type: {config.model_type}") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(str(path)) |
|
log.info(f"Loading model from {path}, config: {config}") |
|
model = model_cls(config, tokenizer=tokenizer) |
|
|
|
if lora_config is not None: |
|
setup_lora(model, lora_config) |
|
log.info(f"LoRA setup: {lora_config}") |
|
|
|
if load_weights is False: |
|
log.info("Randomly initialized model") |
|
else: |
|
|
|
if "int8" in str(Path(path)): |
|
logger.info("Using int8 weight-only quantization!") |
|
from tools.llama.quantize import WeightOnlyInt8QuantHandler |
|
|
|
simple_quantizer = WeightOnlyInt8QuantHandler(model) |
|
model = simple_quantizer.convert_for_runtime() |
|
|
|
if "int4" in str(Path(path)): |
|
logger.info("Using int4 quantization!") |
|
path_comps = path.name.split("-") |
|
assert path_comps[-2].startswith("g") |
|
groupsize = int(path_comps[-2][1:]) |
|
from tools.llama.quantize import WeightOnlyInt4QuantHandler |
|
|
|
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) |
|
model = simple_quantizer.convert_for_runtime() |
|
|
|
weights = torch.load( |
|
Path(path) / "model.pth", map_location="cpu", mmap=True |
|
) |
|
|
|
if "state_dict" in weights: |
|
logger.warning( |
|
"Using a TextToSemantic LightningModule checkpoint, " |
|
"please make sure it is a full model, not a LoRA model." |
|
) |
|
weights = weights["state_dict"] |
|
|
|
if next(iter(weights.keys())).startswith("model."): |
|
logger.info( |
|
f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys" |
|
) |
|
new_weights = OrderedDict() |
|
for k, v in weights.items(): |
|
new_weights[k.replace("model.", "")] = v |
|
weights = new_weights |
|
|
|
|
|
for k, v in model.named_parameters(): |
|
if k not in weights: |
|
logger.warning(f"No weight for {k}") |
|
elif v.shape != weights[k].shape: |
|
logger.warning( |
|
f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}" |
|
) |
|
|
|
err = model.load_state_dict(weights, strict=False, assign=True) |
|
log.info(f"Loaded weights with error: {err}") |
|
|
|
return model |
|
|
|
def save_pretrained(self, path: str, drop_lora: bool = False): |
|
path = Path(path) |
|
path.mkdir(parents=True, exist_ok=True) |
|
|
|
self.config.save(path / "config.json") |
|
state_dict = self.state_dict() |
|
|
|
if drop_lora: |
|
for key in list(state_dict.keys()): |
|
if "lora" not in key: |
|
continue |
|
|
|
state_dict.pop(key) |
|
log.info(f"Drop LoRA parameter: {key}") |
|
|
|
torch.save(state_dict, path / "model.pth") |
|
self.tokenizer.save_pretrained(path) |
|
|
|
|
|
class NaiveTransformer(BaseTransformer): |
|
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: |
|
super().__init__(config, init_weights=False, tokenizer=tokenizer) |
|
|
|
self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.codebook_output = nn.Linear( |
|
config.dim, |
|
config.codebook_size * config.num_codebooks, |
|
bias=False, |
|
) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult: |
|
token_logits = result.logits |
|
x = result.hidden_states |
|
|
|
|
|
codebook_logits = self.codebook_output(self.codebook_norm(x)) |
|
codebook_logits = rearrange( |
|
codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks |
|
) |
|
|
|
return TransformerForwardResult( |
|
token_logits=token_logits, |
|
codebook_logits=codebook_logits, |
|
) |
|
|
|
def forward( |
|
self, |
|
inp: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
) -> TransformerForwardResult: |
|
result = super().forward( |
|
inp=inp, |
|
key_padding_mask=key_padding_mask, |
|
) |
|
return self.decode(result) |
|
|
|
def forward_generate( |
|
self, x: Tensor, input_pos: Optional[Tensor] = None |
|
) -> TransformerForwardResult: |
|
result = super().forward_generate(x, input_pos) |
|
return self.decode(result) |
|
|
|
|
|
class DualARTransformer(BaseTransformer): |
|
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: |
|
super().__init__(config, init_weights=False, tokenizer=tokenizer) |
|
|
|
|
|
self.fast_embeddings = nn.Embedding(config.codebook_size, config.dim) |
|
|
|
|
|
self.fast_layers = nn.ModuleList( |
|
TransformerBlock(config, use_sdpa=False) for _ in range(config.n_fast_layer) |
|
) |
|
self.fast_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.fast_output = nn.Linear( |
|
config.dim, |
|
config.codebook_size, |
|
bias=False, |
|
) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def setup_caches( |
|
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 |
|
): |
|
super().setup_caches(max_batch_size, max_seq_len, dtype) |
|
|
|
head_dim = self.config.dim // self.config.n_head |
|
|
|
|
|
|
|
for b in self.fast_layers: |
|
b.attention.kv_cache = KVCache( |
|
max_batch_size, |
|
self.config.num_codebooks, |
|
self.config.n_local_heads, |
|
head_dim, |
|
dtype=dtype, |
|
) |
|
|
|
def forward( |
|
self, |
|
inp: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
) -> TransformerForwardResult: |
|
parent_result = super().forward(inp, key_padding_mask) |
|
token_logits = parent_result.logits |
|
x = parent_result.hidden_states |
|
|
|
|
|
fast_seq_len = self.config.num_codebooks |
|
fast_mask = self.causal_mask[ |
|
None, None, :fast_seq_len, :fast_seq_len |
|
] |
|
fast_freqs_cis = self.freqs_cis[:fast_seq_len] |
|
|
|
|
|
codebooks = inp[:, 1:-1, 1:] |
|
codebooks = F.pad(codebooks, (0, 1), value=0) |
|
codebook_embeddings = self.fast_embeddings(codebooks) |
|
x = torch.cat([x[:, None], codebook_embeddings], dim=1) |
|
b, s = x.size(0), x.size(2) |
|
x = rearrange(x, "b n s d -> (b s) n d") |
|
|
|
|
|
codebooks = rearrange(codebooks, "b n s -> (b s) n") |
|
codebook_mask = (codebooks == 0).all(dim=-1) |
|
|
|
if torch.all(codebook_mask): |
|
|
|
codebook_mask[:8] = False |
|
|
|
x_bs, x_len = x.size(0), x.size(1) |
|
x = x[~codebook_mask] |
|
|
|
for layer in self.fast_layers: |
|
if self.config.use_gradient_checkpointing and self.training: |
|
x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True) |
|
else: |
|
x = layer(x, fast_freqs_cis, fast_mask) |
|
|
|
|
|
fast_out = self.fast_norm(x) |
|
codebook_logits = self.fast_output(fast_out) |
|
|
|
|
|
buffer = torch.zeros( |
|
x_bs, |
|
x_len, |
|
codebook_logits.size(-1), |
|
device=codebook_logits.device, |
|
dtype=codebook_logits.dtype, |
|
) |
|
buffer[~codebook_mask] = codebook_logits |
|
codebook_logits = buffer |
|
|
|
assert codebook_logits.shape[1] == self.config.num_codebooks |
|
codebook_logits = rearrange( |
|
codebook_logits, |
|
"(b s) n d -> b s n d", |
|
b=b, |
|
s=s, |
|
n=self.config.num_codebooks, |
|
) |
|
|
|
return TransformerForwardResult( |
|
token_logits=token_logits, |
|
codebook_logits=codebook_logits, |
|
) |
|
|
|
def forward_generate_fast( |
|
self, x: Tensor, input_pos: Optional[Tensor] = None |
|
) -> Tensor: |
|
|
|
x = x.view(1, 1, -1) |
|
|
|
fast_mask = self.causal_mask[ |
|
None, None, input_pos, : self.config.num_codebooks |
|
] |
|
fast_freqs_cis = self.freqs_cis[input_pos] |
|
|
|
for layer in self.fast_layers: |
|
x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos) |
|
|
|
|
|
fast_out = self.fast_norm(x) |
|
codebook_logits = self.fast_output(fast_out) |
|
|
|
return codebook_logits |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None: |
|
super().__init__() |
|
self.attention = Attention(config, use_sdpa=use_sdpa) |
|
self.feed_forward = FeedForward(config) |
|
self.ffn_norm = RMSNorm(config.dim, config.norm_eps) |
|
self.attention_norm = RMSNorm(config.dim, config.norm_eps) |
|
|
|
def forward( |
|
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None |
|
) -> Tensor: |
|
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) |
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True): |
|
super().__init__() |
|
assert config.dim % config.n_head == 0 |
|
|
|
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim |
|
|
|
self.wqkv = nn.Linear( |
|
config.dim, total_head_dim, bias=config.attention_qkv_bias |
|
) |
|
self.wo = nn.Linear(config.dim, config.dim, bias=False) |
|
self.kv_cache = None |
|
|
|
self.dropout = config.dropout |
|
self.n_head = config.n_head |
|
self.head_dim = config.head_dim |
|
self.n_local_heads = config.n_local_heads |
|
self.dim = config.dim |
|
self.use_sdpa = use_sdpa |
|
self._register_load_state_dict_pre_hook(self.load_hook) |
|
|
|
def load_hook(self, state_dict, prefix, *args): |
|
if prefix + "wq.weight" in state_dict: |
|
wq = state_dict.pop(prefix + "wq.weight") |
|
wk = state_dict.pop(prefix + "wk.weight") |
|
wv = state_dict.pop(prefix + "wv.weight") |
|
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
freqs_cis: Tensor, |
|
mask: Tensor, |
|
input_pos: Optional[Tensor] = None, |
|
) -> Tensor: |
|
bsz, seqlen, _ = x.shape |
|
|
|
kv_size = self.n_local_heads * self.head_dim |
|
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) |
|
|
|
q = q.view(bsz, seqlen, self.n_head, self.head_dim) |
|
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
|
|
q = apply_rotary_emb(q, freqs_cis) |
|
k = apply_rotary_emb(k, freqs_cis) |
|
|
|
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
|
|
|
if self.kv_cache is not None: |
|
k, v = self.kv_cache.update(input_pos, k, v) |
|
|
|
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) |
|
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) |
|
|
|
if self.use_sdpa: |
|
if mask is None: |
|
with sdpa_kernel(SDPBackend.FLASH_ATTENTION): |
|
y = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=True, |
|
|
|
) |
|
else: |
|
y = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
) |
|
else: |
|
y = self.eq_scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
) |
|
|
|
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) |
|
|
|
return self.wo(y) |
|
|
|
def eq_scaled_dot_product_attention( |
|
self, |
|
query, |
|
key, |
|
value, |
|
attn_mask=None, |
|
dropout_p=0.0, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
L, S = query.size(-2), key.size(-2) |
|
scale_factor = 1 / math.sqrt(query.size(-1)) |
|
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) |
|
else: |
|
attn_bias += attn_mask |
|
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor |
|
attn_weight += attn_bias |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) |
|
|
|
return attn_weight @ value |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config: BaseModelArgs) -> None: |
|
super().__init__() |
|
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) |
|
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) |
|
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: |
|
freqs = 1.0 / ( |
|
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) |
|
) |
|
t = torch.arange(seq_len, device=freqs.device) |
|
freqs = torch.outer(t, freqs) |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) |
|
return cache.to(dtype=torch.bfloat16) |
|
|
|
|
|
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: |
|
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) |
|
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) |
|
x_out2 = torch.stack( |
|
[ |
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], |
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], |
|
], |
|
-1, |
|
) |
|
|
|
x_out2 = x_out2.flatten(3) |
|
return x_out2.type_as(x) |
|
|