Spaces:
Sleeping
Sleeping
initial commit
Browse files
README.md
CHANGED
@@ -1,14 +1,48 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Retrieval-AI
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
Retrieval-AI is a simple image retrieval application using a CLIP model and FAISS indexing. It allows users to search for images based on text queries and provides accessibility features such as dark mode and speech-to-text for visually impaired users.
|
5 |
+
|
6 |
+
## Features
|
7 |
+
Text-based Image Search: Users can input a text query to find matching images.
|
8 |
+
Adjustable Results Count: Users can select how many results to display.
|
9 |
+
Example Queries: Predefined queries help users get started.
|
10 |
+
Dark Mode Support: Enhances usability in low-light conditions.
|
11 |
+
Speech-to-Text Input: Allows visually impaired users to speak their queries instead of typing.
|
12 |
+
|
13 |
+
## Installation
|
14 |
+
### Prerequisites
|
15 |
+
Python 3.8+
|
16 |
+
Required dependencies (see `requirements.txt` if available)
|
17 |
+
|
18 |
+
### Setup
|
19 |
+
1. Clone the repository:
|
20 |
+
|
21 |
+
git clone https://github.com/yourusername/retrieval-ai.git
|
22 |
+
cd retrieval-ai
|
23 |
+
|
24 |
+
2. Install dependencies:
|
25 |
+
|
26 |
+
pip install -r requirements.txt
|
27 |
+
|
28 |
+
3. Run the application:
|
29 |
+
|
30 |
+
python app.py
|
31 |
+
|
32 |
+
4. Open the provided URL in a browser (e.g., `http://127.0.0.1:7860`).
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
1. Enter a text query or use speech input.
|
36 |
+
2. Adjust the number of results (1-10).
|
37 |
+
3. View the matched images in the results gallery.
|
38 |
+
|
39 |
+
## Accessibility Features
|
40 |
+
Dark Mode: Automatically adapts the UI for better readability in dark environments.
|
41 |
+
Speech-to-Text: Allows users to dictate their search queries for improved accessibility.
|
42 |
+
|
43 |
+
## License
|
44 |
+
This project is open-source under the MIT License.
|
45 |
+
|
46 |
+
## Contact
|
47 |
+
For any inquiries or contributions, please reach out to Joyce Nhlengetwa at [email protected].
|
48 |
+
|
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
import numpy as np
|
5 |
+
import kagglehub
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
from pathlib import Path
|
9 |
+
import logging
|
10 |
+
import faiss
|
11 |
+
from tqdm import tqdm
|
12 |
+
import speech_recognition as sr
|
13 |
+
from gtts import gTTS
|
14 |
+
import tempfile
|
15 |
+
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
class ImageSearchSystem:
|
21 |
+
def __init__(self):
|
22 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
logger.info(f"Using device: {self.device}")
|
24 |
+
|
25 |
+
# Load CLIP model
|
26 |
+
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
27 |
+
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16").to(self.device)
|
28 |
+
|
29 |
+
# Initialize dataset
|
30 |
+
self.image_paths = []
|
31 |
+
self.index = None
|
32 |
+
self.initialized = False
|
33 |
+
|
34 |
+
def initialize_dataset(self) -> None:
|
35 |
+
"""Download and process dataset"""
|
36 |
+
try:
|
37 |
+
path = kagglehub.dataset_download("alessandrasala79/ai-vs-human-generated-dataset")
|
38 |
+
image_folder = os.path.join(path, 'test_data_v2')
|
39 |
+
|
40 |
+
self.image_paths = [
|
41 |
+
f for f in Path(image_folder).glob("**/*")
|
42 |
+
if f.suffix.lower() in ['.jpg', '.jpeg', '.png']
|
43 |
+
]
|
44 |
+
|
45 |
+
if not self.image_paths:
|
46 |
+
raise ValueError(f"No images found in {image_folder}")
|
47 |
+
|
48 |
+
logger.info(f"Found {len(self.image_paths)} images")
|
49 |
+
|
50 |
+
self._create_image_index()
|
51 |
+
self.initialized = True
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
logger.error(f"Dataset initialization failed: {str(e)}")
|
55 |
+
raise
|
56 |
+
|
57 |
+
def _create_image_index(self, batch_size: int = 32) -> None:
|
58 |
+
"""Create FAISS index"""
|
59 |
+
try:
|
60 |
+
all_features = []
|
61 |
+
|
62 |
+
for i in tqdm(range(0, len(self.image_paths), batch_size), desc="Indexing images"):
|
63 |
+
batch_paths = self.image_paths[i:i + batch_size]
|
64 |
+
batch_images = [Image.open(img).convert("RGB") for img in batch_paths]
|
65 |
+
|
66 |
+
if batch_images:
|
67 |
+
inputs = self.processor(images=batch_images, return_tensors="pt", padding=True)
|
68 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
69 |
+
|
70 |
+
with torch.no_grad():
|
71 |
+
features = self.model.get_image_features(**inputs)
|
72 |
+
features = features / features.norm(dim=-1, keepdim=True)
|
73 |
+
all_features.append(features.cpu().numpy())
|
74 |
+
|
75 |
+
all_features = np.concatenate(all_features, axis=0)
|
76 |
+
self.index = faiss.IndexFlatIP(all_features.shape[1])
|
77 |
+
self.index.add(all_features)
|
78 |
+
|
79 |
+
logger.info("Image index created successfully")
|
80 |
+
|
81 |
+
except Exception as e:
|
82 |
+
logger.error(f"Failed to create image index: {str(e)}")
|
83 |
+
raise
|
84 |
+
|
85 |
+
def search(self, query: str, audio_path: str = None, k: int = 5):
|
86 |
+
"""Search for images using text or speech"""
|
87 |
+
try:
|
88 |
+
if not self.initialized:
|
89 |
+
raise RuntimeError("System not initialized. Call initialize_dataset() first.")
|
90 |
+
|
91 |
+
# Convert speech to text if audio input is provided
|
92 |
+
if audio_path:
|
93 |
+
recognizer = sr.Recognizer()
|
94 |
+
with sr.AudioFile(audio_path) as source:
|
95 |
+
audio_data = recognizer.record(source)
|
96 |
+
try:
|
97 |
+
query = recognizer.recognize_google(audio_data)
|
98 |
+
except sr.UnknownValueError:
|
99 |
+
return [], "Could not understand the spoken query.", None
|
100 |
+
|
101 |
+
# Process text query
|
102 |
+
inputs = self.processor(text=[query], return_tensors="pt", padding=True)
|
103 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
text_features = self.model.get_text_features(**inputs)
|
107 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
108 |
+
|
109 |
+
# Search FAISS index
|
110 |
+
scores, indices = self.index.search(text_features.cpu().numpy(), k)
|
111 |
+
results = [Image.open(self.image_paths[idx]) for idx in indices[0]]
|
112 |
+
|
113 |
+
# Generate Text-to-Speech
|
114 |
+
tts = gTTS(f"Showing results for {query}")
|
115 |
+
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
116 |
+
tts.save(temp_audio.name)
|
117 |
+
|
118 |
+
return results, query, temp_audio.name
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Search failed: {str(e)}")
|
122 |
+
return [], "Error during search.", None
|
123 |
+
|
124 |
+
def create_demo_interface() -> gr.Interface:
|
125 |
+
"""Create Gradio interface with dark mode & speech support"""
|
126 |
+
system = ImageSearchSystem()
|
127 |
+
|
128 |
+
try:
|
129 |
+
system.initialize_dataset()
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Failed to initialize system: {str(e)}")
|
132 |
+
raise
|
133 |
+
|
134 |
+
examples = [
|
135 |
+
["a beautiful landscape with mountains"],
|
136 |
+
["people working in an office"],
|
137 |
+
["a cute dog playing"],
|
138 |
+
["a modern city skyline at night"],
|
139 |
+
["a delicious-looking meal"]
|
140 |
+
]
|
141 |
+
|
142 |
+
return gr.Interface(
|
143 |
+
fn=system.search,
|
144 |
+
inputs=[
|
145 |
+
gr.Textbox(label="Enter your search query:", placeholder="Describe the image...", lines=2),
|
146 |
+
gr.Audio(source="microphone", type="filepath", label="Speak Your Query (Optional)")
|
147 |
+
],
|
148 |
+
outputs=[
|
149 |
+
gr.Gallery(label="Search Results", show_label=True, columns=5, height="auto"),
|
150 |
+
gr.Textbox(label="Spoken Query", interactive=False),
|
151 |
+
gr.Audio(label="Results Spoken Out Loud")
|
152 |
+
],
|
153 |
+
title="Multi-Modal Image Search",
|
154 |
+
description="Use text or voice to search for images.",
|
155 |
+
theme="dark",
|
156 |
+
examples=examples,
|
157 |
+
cache_examples=True,
|
158 |
+
css=".gradio-container {background-color: #121212; color: #ffffff;}"
|
159 |
+
)
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
try:
|
163 |
+
demo = create_demo_interface()
|
164 |
+
demo.launch(share=True, enable_queue=True, max_threads=40)
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"Failed to launch app: {str(e)}")
|
167 |
+
raise
|