--- title: langchain-streamlit-demo emoji: 🦜 colorFrom: green colorTo: red sdk: docker app_port: 7860 pinned: true tags: [langchain, streamlit, docker] --- # langchain-streamlit-demo [](https://opensource.org/licenses/MIT) [](https://www.python.org) [](https://github.com/PyCQA/bandit) [](https://github.com/charliermarsh/ruff) [](https://github.com/psf/black) [](https://github.com/pre-commit/pre-commit) [](http://mypy-lang.org/) [](https://hub.docker.com/r/joshuasundance/langchain-streamlit-demo) [](https://hub.docker.com/r/joshuasundance/langchain-streamlit-demo) [](https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo) This project shows how to build a simple chatbot UI with [Streamlit](https://streamlit.io) and [LangChain](https://langchain.com). This `README` was written by [Claude 2](https://www.anthropic.com/index/claude-2), an LLM from [Anthropic](https://www.anthropic.com/). # Features - Chat interface for talking to AI assistant - Supports models from - [OpenAI](https://openai.com/) - `gpt-3.5-turbo` - `gpt-4` - [Anthropic](https://www.anthropic.com/) - `claude-instant-v1` - `claude-2` - [Anyscale Endpoints](https://endpoints.anyscale.com/) - `meta-llama/Llama-2-7b-chat-hf` - `meta-llama/Llama-2-13b-chat-hf` - `meta-llama/Llama-2-70b-chat-hf` - Streaming output of assistant responses - Leverages LangChain for dialogue and memory management - Integrates with [LangSmith](https://smith.langchain.com) for tracing conversations - Allows giving feedback on assistant's responses - Tries reading API keys and default values from environment variables - Parameters in sidebar can be customized # Code Overview - `langchain-streamlit-demo/app.py` - Main Streamlit app definition - `langchain-streamlit-demo/llm_stuff.py` - LangChain helper functions - `Dockerfile`, `docker-compose.yml`: Docker deployment - `kubernetes/`: Kubernetes deployment files - `.github/workflows/`: CI/CD workflows # Deployment `langchain-streamlit-demo` is deployed as a [Docker image](https://hub.docker.com/r/joshuasundance/langchain-streamlit-demo) based on the [`python:3.11-slim-bookworm`](https://github.com/docker-library/python/blob/81b6e5f0643965618d633cd6b811bf0879dee360/3.11/slim-bookworm/Dockerfile) image. CI/CD workflows in `.github/workflows` handle building and publishing the image as well as pushing it to Hugging Face. ## Run on HuggingFace Spaces [](https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo) ## With Docker (pull from Docker Hub) 1. _Optional_: Create a `.env` file based on `.env-example` 2. Run in terminal: `docker run -p 7860:7860 joshuasundance/langchain-streamlit-demo:latest` or `docker run -p 7860:7860 --env-file .env joshuasundance/langchain-streamlit-demo:latest` 3. Open http://localhost:7860 in your browser ## Docker Compose (build locally) 1. Clone the repo. Navigate to cloned repo directory 2. _Optional_: Create a `.env` file based on `.env-example` 3. Run in terminal: `docker compose up` or `docker compose up --env-file .env` 4. Open http://localhost:7860 in your browser ## Kubernetes 1. Clone the repo. Navigate to cloned repo directory 2. Create a `.env` file based on `.env-example` 3. Run bash script: `/bin/bash ./kubernetes/deploy.sh` 4. Get the IP address for your new service: `kubectl get service langchain-streamlit-demo` # Links - [Streamlit](https://streamlit.io) - [LangChain](https://langchain.com) - [LangSmith](https://smith.langchain.com) - [OpenAI](https://openai.com/) - [Anthropic](https://www.anthropic.com/) - [Anyscale Endpoints](https://endpoints.anyscale.com/)